COMPARATIVE ASSESSMENT OF METHODS FOR PREDICTING THE TECHNICAL CONDITION OF ELECTRIC DRIVES OF HAZARDOUS PRODUCTION FACILITIES

Author:

Vasenin A. B.,Stepanov S. E.,Kryukov O. V.

Abstract

The paper deals with the design of efficient and reliable systems for operational diagnostics and forecasting of the technical condition of adjustable megawatt electric drives. The statistics of failure of the most critical components of AC electrical machines – stator windings, bearings and ACS are presented. The methodology and architecture of artificial neural networks have been developed for obtaining predictive models of high-voltage synchronous machines. Examples of neuro-fuzzy prediction of the technical state and resource of stator windings and analysis of the spectral composition of the supply voltage by the series method are given. Tests of selected networks, the Box–Jenkins fuzzy model, models of the method for analyzing the dynamics of spectral components with predicting the values of current and stator temperatures are obtained. The comparative results of the analysis of the expected states of electric machines of high power, based on the consideration of various operational factors of the operation of electric drives, made it possible to develop recommendations for the use of new predictive methods.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine

Reference25 articles.

1. Kryukov O. V. (2017). Scientific background for the development of intelligent electric drives for oil and gas process units. Vestnik YuUrGU. Energetika, Vol. 17, (1), pp. 56 – 62. [in Russian language]

2. Repin D. G., Kryukov O. V. (2017). Concepts for monitoring the technical condition of compressor stations. Kontrol'. Diagnostika, (12), pp. 30 – 35. [in Russian language] DOI: 10.14489/td.2017.12.pp.030-035

3. Repin D. G., Kryukov O. V. (2014). On-line monitoring systems of the technical condition of power plants for the energy safety of compressor stations. Gazovaya promyshlennost', 712, pp. 84 – 87. [in Russian language]

4. Kryukov O. V. (2017). Experience in designing an automated process control system for oil pumping stations of main oil pipelines. Pribory i sistemy. Upravlenie, kontrol', diagnostika, (1), pp. 2 – 7. [in Russian language]

5. Kryukov O. V., Serebryakov A. V. (2016). Artificial neural networks of technical state prediction of gas compressor units electric motors. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika, Vol. 16, (1), pp. 66 – 74. [in Russian language]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power Losses Quadratic Approximation for the Electric Drive Load Condition Monitoring;2022 International Russian Automation Conference (RusAutoCon);2022-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3