Chemical and Plant Mediated Synthesis of La2O3 Nanoparticles and Comparison of their Structural, Antibacterial, Photocatalytic and Optical Properties

Author:

Swetharanyam A.1,Kunjitham R.1

Affiliation:

1. P.G. & Research Department of Chemistry, Poompuhar (Autonomous) College (Affiliated to Bharathidasan University, Tiruchirappalli), Melaiyur-609107, India

Abstract

The La2O3 nanoparticles have been synthesized successfully with a chemical and biosynthesized method. The optical bandgap energy and of chemically synthesized or biosynthesized (M. oppositifolia and T. portlacaustrum leaf extract) La2O3 nanoparticles was calculated from UV-visible absorption between 5.10, 4.26 and 4.46 eV. The good polycrystalline cubic nature of synthesized La2O3 nanoparticles was evident from the bright circular SAED pattern, consistent with the XRD outcome. It is clear that the non-polar extracts could function as stabilizers for La2O3 nanoparticles through attachment to the counterions. The La2O3 nanoparticles have been used as efficient photocatalyst to degrade acid black 1 dye under sunlight irradiation. Besides, this biocatalyst showed excellent ability to degrade biosynthesized La2O3 nanoparticles (T. portlacaustrum) under visible light irradiation 87%. Synthesis of La2O3 nanoparticles by green chemistry process presented good antibacterial activity against Gram-negative and Gram-positive bacteria.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3