Temporal dynamics of the hummingbird-plant interaction network of a dry forest in Chamela, Mexico: a 30-year follow-up after two hurricanes

Author:

Díaz Infante Sergio1,Lara Carlos2,Arizmendi Maria del Coro1

Affiliation:

1. Laboratorio de Ecología, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico

2. Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, San Felipe Ixtacuixtla, Tlaxcala, Mexico

Abstract

Background Interactions among species are a driving force of community structure. The species composition of animal-plant interaction networks can be highly dynamic on a temporal scale, even though the general network structure is usually not altered. However, few studies have examined how interaction networks change over long periods of time, particularly after extreme natural events. We analyzed herein the structure of the hummingbird-plant interaction network in a dry forest of Chamela, Mexico, comparing the structure in 1985–1986 with that in 2016–2017 following the passage of two hurricanes (category 2 Jova in 2011 and category 4 Patricia in 2015). Methods The fieldwork was carried out in the Chamela-Cuixmala Biosphere Reserve in Jalisco, Mexico. In the last 30 years, three severe drought events and two hurricanes have affected this region. Previously, from 1985–1986, hummingbird-plant interactions were recorded monthly for one year in the study area. Then, from 2016–2017, we replicated the sampling in the same localities. We compared the network parameters describing the plant-hummingbird interactions of each period using adjacency matrices. Results We found differences in the number and identity of interacting species, especially plants. The plant species missing in 2016–2017 were either the least connected in the original network (1985–1986) or belonged to groups such as cacti, epiphytes, or trees. The new plant species incorporated in the 2016–2017 network were herbs, vines, and shrubs, or other species barely connected. These changes in the composition are consistent with reports on vegetation damage after strong hurricanes at other study sites. Conversely, all hummingbird species remained in the network, with the exception of Heliomaster constantii, which was primarily connected to a plant species absent in the 2016–2017 network. Migratory and habitat generalist species (i.e., Archilochus spp.) showed higher abundances following the disturbance events. Conclusions Most of the parameters describing the hummingbird-plant network structure remained unchanged after 30 years, with the exception of an increase in plant robustness and hummingbird niche overlap. However, the network’s generalist core was affected by the loss of some species. Also, core plant species such as Ipomoea bracteata, Combretum farinosum, and Justicia candicans were found to be important for maintaining the hummingbird-plant interaction network. The temporal perspective of this study provides unique insights into the conservation of plant-hummingbird networks across time and extreme natural events.

Funder

Universidad Nacional Autónoma de México (UNAM) PAPIIT research funds

Consejo Nacional de Ciencia y Tecnología

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference95 articles.

1. Year-to-year variation in the topology of a plant–pollinator interaction network;Alarcón;Oikos,2008

2. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests;Allen;Forest Ecology and Management,2010

3. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement;Almeida-Neto;Oikos,2008

4. Comparisons of avian census results using variable distance transect and variable circular plot techniques;Anderson;Studies in Avian Biology,1981

5. Changes in patterns of understory leaf phenology and herbivory following hurricane damage;Angulo-Sandoval;Biotropica,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3