Transcriptional patterns of Coffea arabica L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust

Author:

Baba Viviane Yumi12,Braghini Masako Toma3,Santos Tiago Benedito dos24,Carvalho Kenia de25,Soares João Danillo Moura2,Ivamoto-Suzuki Suzana Tiemi26ORCID,Maluf Mirian P.37,Padilha Lilian37,Paccola-Meirelles Luzia D.18,Pereira Luiz Filipe27,Domingues Douglas S.26ORCID

Affiliation:

1. Department of Agronomy, Universidade Estadual de Londrina, Londrina, Paraná, Brazil

2. Plant Biotechnology Laboratory, Instituto Agronômico do Paraná, Londrina, Paraná, Brazil

3. Centro de Análise e Pesquisa Tecnológica do Agronegócio do Café “Alcides Carvalho,” Instituto Agronômico de Campinas, Campinas, São Paulo, Brazil

4. Programa de Pós-Graduação em Agronomia, Universidade do Oeste Paulista, Presidente Prudente, São Paulo, Brazil

5. Plant Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil

6. Department of Botany, Instituto de Biociências, São Paulo State University, UNESP, Rio Claro, São Paulo, Brazil

7. Plant Breeding, Embrapa Café, Brasília-DF, Brazil

8. Department of Agronomy, Universidade Paranaense, Umuarama, Paraná, Brazil

Abstract

This study evaluated the transcriptional profile of genes related to nitrogen (N) assimilation in coffee plants susceptible and resistant to rust fungi under N sufficiency and N suppression. For this purpose, we inoculated young coffee leaves with Hemileia vastatrix uredospores and collected them at 0, 12, 24 and 48 hours post-inoculation (HPI) to evaluate the relative expressions of genes encoding cytosolic glutamine synthetase (CaGS1), plastid glutamine synthetase (CaGS2), nitrate reductase (CaNR), and asparagine synthetase (CaAS). The genes exhibited distinct patterns of transcriptional modulation for the different genotypes and N nutritional regimes. The resistant genotype (I59) presented high levels of transcription in response to pathogen inoculation for CaNR and CaGS1 genes, evaluated under N sufficiency in the initial moments of infection (12 HPI). The gene CaGS1 also showed a peak at 48 HPI. The susceptible genotype (CV99) showed increased transcript rates of CaNR at 12 and 24 HPI in response to rust inoculation. The transcriptional patterns observed for CV99, under N suppression, were high levels for CaAS and CaGS2 at all post-inoculation times in response to coffee leaf rust disease. In addition, CaGS1 was up-regulated at 48 HPI for CV99. Cultivar I59 showed high transcript levels at 12 HPI for CaAS and peaks at 24 and 48 HPI for CaGS2 in inoculated samples. Consequently, total chlorophyl concentration was influenced by N suppression and by rust infection. Regarding enzyme activities in vitro for glutamine synthetase and CaNR, there was an increase in infected coffee leaves (I59) and under N sufficiency. Moreover, CV99 was modulated in both N nutritional regimes for GS activity in response to rust. Our results indicate that N transport genes trigger a differential modulation between genotypes through the action of rust disease.

Funder

National CNPq

FAPESP processes

Consórcio Pesquisa Café

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3