Application of dynamic expansion tree for finding large network motifs in biological networks

Author:

Patra Sabyasachi,Mohapatra Anjali

Abstract

Network motifs play an important role in the structural analysis of biological networks. Identification of such network motifs leads to many important applications such as understanding the modularity and the large-scale structure of biological networks, classification of networks into super-families, and protein function annotation. However, identification of large network motifs is a challenging task as it involves the graph isomorphism problem. Although this problem has been studied extensively in the literature using different computational approaches, still there is a lot of scope for improvement. Motivated by the challenges involved in this field, an efficient and scalable network motif finding algorithm using a dynamic expansion tree is proposed. The novelty of the proposed algorithm is that it avoids computationally expensive graph isomorphism tests and overcomes the space limitation of the static expansion tree (SET) which makes it enable to find large motifs. In this algorithm, the embeddings corresponding to a child node of the expansion tree are obtained from the embeddings of a parent node, either by adding a vertex or by adding an edge. This process does not involve any graph isomorphism check. The time complexity of vertex addition and edge addition are O(n) and O(1), respectively. The growth of a dynamic expansion tree (DET) depends on the availability of patterns in the target network. Pruning of branches in the DET significantly reduces the space requirement of the SET. The proposed algorithm has been tested on a protein–protein interaction network obtained from the MINT database. The proposed algorithm is able to identify large network motifs faster than most of the existing motif finding algorithms.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference34 articles.

1. MINT: the molecular interaction database;Chatr-Aryamontri;Nucleic Acids Research,2007

2. An efficient sampling algorithm for network motif detection;Chen;Journal of Computational and Graphical Statistics,2017

3. A review on models and algorithms for motif discovery in protein-protein interaction networks;Ciriello;Briefings in Functional Genomics and Proteomics,2008

4. The complexity of theorem-proving procedures;Cook;Proceedings of the Third Annual ACM Symposium on Theory of Computing,1971

5. Identification of large disjoint motifs in biological networks;Elhesha;BMC Bioinformatics,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3