Characterization of aminopeptidase encoding gene anp-1 and its association with development in Caenorhabditis elegans

Author:

Su Shanchun12ORCID,Pan Baoliang1,Hu Yanxin1,Wang Ming1

Affiliation:

1. Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, Beijing, China

2. Institute of Anesthesiology and Pain (IAP), Taihe Hospital, Shiyan, Hubei, China

Abstract

Background Aminopeptidases play important roles in various biological processes in nematodes including growth, development and reproduction. Although the aminopeptidases have been shown to regulate reproduction in Caenorhabditis elegans (C. elegans), the role of aminopeptidases in development and aging has not been reported. This study focused on the function of aminopeptidase AlaNyl aminopeptidase 1 (ANP-1) on development in C. elegans. Methods In the present study, we reported the identification of ANP-1 in C. elegans along with sequence analysis and its functional expression and characterization. The phenotype changes were observed when anp-1 mutated. Then, differential expression genes (DEGs) between wild type strain (N2) and anp-1 deletion strain (RB804) were identified using transcriptome sequencing method. Finally, DEGs were verified by qRT-PCR assay. Results Our observations suggested that anp-1 mutation induced small body size in the L4/young adult stage of C. elegans, however, there was no difference between N2 and RB804 in adult stage. Moreover, deletion of anp-1 resulted in shortening lifespan and laying fewer eggs. DEGs (184 genes) were observed between N2 groups and RB804 groups by transcriptome sequencing. According to GO annotations and KEGG enrichment analysis, these DEGs play vital roles in development regulation in C. elegans. These data demonstrate ANP-1 participates in development and aging of C. elegans and will considerably contribute to the existing knowledge of aminopeptidase function in C. elegans.

Funder

State Key Laboratory of Veterinary Etiological biology

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3