Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002

Author:

Liu Cong1,Shen Naikun2,Wu Jiafa2,Jiang Mingguo2,Shi Songbiao1,Wang Jinzi2,Wei Yanye2,Yang Lifang1

Affiliation:

1. Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China

2. School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China

Abstract

Background Chitinases are enzymes which degrade β-1,4-glycosidid linkages in chitin. The enzymatic degradation of shellfish waste (containing chitin) to chitooligosaccharides is used in industrial applications to generate high-value-added products from such waste. However, chitinases are currently produced with low efficiency and poor tolerance, limiting the industrial utility. Therefore, identifying chitinases with higher enzymatic activity and tolerance is of great importance. Methods Primers were designed using the genomic database of Paenibacillus chitinolyticus NBRC 15660. An exochitinase (CHI) was cloned into the recombinant plasmid pET-22b (+) to form pET-22b (+)-CHI, which was transformed into Escherichia coli TOP10 to construct a genomic library. Transformation was confirmed by colony-polymerase chain reaction and electrophoresis. The target sequence was verified by sequencing. Recombinant pET-22b (+)-CHI was transformed into E. coli Rosetta-gami B (DE3) for expression of chitinase. Recombinant protein was purified by Ni-NTA affinity chromatography and enzymatic analysis was carried out. Results The exochitinase CHI from P. chitinolyticus strain UMBR 0002 was successfully cloned and heterologously expressed in E. coli Rosetta-gami B (DE3). Purification yielded a 13.36-fold enrichment and recovery yield of 72.20%. The purified enzyme had a specific activity of 750.64 mU mg−1. The optimum pH and temperature for degradation of colloidal chitin were 5.0 and 45 °C, respectively. The enzyme showed high stability, retaining >70% activity at pH 4.0–10.0 and 25–45 °C (maximum of 90 min). The activity of CHI strongly increased with the addition of Ca2+, Mn2+, Tween 80 and urea. Conversely, Cu2+, Fe3+, acetic acid, isoamyl alcohol, sodium dodecyl sulfate and β-mercaptoethanol significantly inhibited enzyme activity. The oligosaccharides produced by CHI from colloidal chitin exhibited a degree of polymerization, forming N-acetylglucosamine (GlcNAc) and (GlcNAc)2 as products. Conclusions This is the first report of the cloning, heterologous expression and purification of a chitinase from P. chitinolyticus strain UMBR 0002. The results highlight CHI as a good candidate enzyme for green degradation of chitinous waste.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Guangxi province, China

Science and Technology Major Project of Guangxi

Specific Research Project of Guangxi for Research Bases and Talents

Xiangsihu Young Scholars Innovative Research Team of Guangxi University for Nationalities

The Scientific Research Project for Introducing High-level Talents of Guangxi University for Nationalities

Basic Ability Improvement Project of Guangxi University for Young and Middle-Aged Teachers

Innovation Project of Guangxi Graduate Education

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3