Pharmacokinetics and safety of oral glyburide in dogs with acute spinal cord injury

Author:

Jeffery Nick1,Boudreau C. Elizabeth1,Konarik Megan2,Mays Travis2,Fajt Virginia3

Affiliation:

1. Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States of America

2. Veterinary Medical Diagnostic Laboratory, Texas A&M University, College Station, TX, United States of America

3. Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, United States of America

Abstract

Background Glyburide (also known as glibenclamide) is effective in reducing the severity of tissue destruction and improving functional outcome after experimental spinal cord injury in rodents and so has promise as a therapy in humans. There are many important differences between spinal cord injury in experimental animals and in human clinical cases, making it difficult to introduce new therapies into clinical practice. Spinal cord injury is also common in pet dogs and requires new effective therapies, meaning that they can act as a translational model for the human condition while also deriving direct benefits from such research. In this study we investigated the pharmacokinetics and safety of glyburide in dogs with clinical spinal cord injury. Methods We recruited dogs that had incurred an acute thoracolumbar spinal cord injury within the previous 72 h. These had become acutely non-ambulatory on the pelvic limbs and were admitted to our veterinary hospitals to undergo anesthesia, cross sectional diagnostic imaging, and surgical decompression. Oral glyburide was given to each dog at a dose of 75 mcg/kg. In five dogs, we measured blood glucose concentrations for 10 h after a single oral dose. In six dogs, we measured serum glyburide and glucose concentrations for 24 h and estimated pharmacokinetic parameters to estimate a suitable dose for use in a subsequent clinical trial in similarly affected dogs. Results No detrimental effects of glyburide administration were detected in any participating dog. Peak serum concentrations of glyburide were attained at a mean of 13 h after dosing, and mean apparent elimination half-life was approximately 7 h. Observed mean maximum plasma concentration was 31 ng/mL. At the glyburide dose administered there was no observable association between glyburide and glucose concentrations in blood. Discussion Our data suggest that glyburide can be safely administered to dogs that are undergoing anesthesia, imaging and surgery for treatment of their acute spinal cord injury and can attain clinically-relevant serum concentrations without developing hazardous hypoglycemia. Serum glyburide concentrations achieved in this study suggest that a loading dose of 150 mcg/kg followed by repeat doses of 75 mcg/kg at 8-hourly intervals would lead to serum glyburide concentrations of 25–50 ng/mL within an acceptably short enough period after oral administration to be appropriate for a clinical trial in canine spinal cord injury.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference28 articles.

1. Photoaffinity labeling and partial purification of the beta cell sulfonylurea receptor using a novel, biologically active glyburide analog;Aguilar-Bryan;Journal of Biological Chemistry,1990

2. Evaluation of six portable blood glucose meters for measuring blood glucose concentration in dogs;Cohen;Journal of the American Veterinary Medical Association,2009

3. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys;Crowe;Nature Medicine,1997

4. Contrasting effects of cord injury on intravenous and oral pharmacokinetics of diclofenac: a drug with intermediate hepatic extraction;Cruz-Antonio;Spinal Cord,2012

5. Understanding drug disposition alterations induced by acute spinal cord injury: role of injury level and route of administration for agents submitted to extensive liver metabolism;Cruz-Antonio;Journal of Neurotrauma,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3