Another choice for measuring tree photosynthesis in vitro

Author:

Meng Changjun12,Liu Xiao13,Chai Yongfu13,Xu Jinshi1,Yue Ming13

Affiliation:

1. Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi’an, Shaanxi, China

2. College of Biology and Environmental Engineering, Xi’an University, Xi’an, Shaanxi, China

3. School of Life Sciences, Northwest University, Xi’an, Shaanxi, China

Abstract

Background In the case of tall trees in the field or in rugged terrain where an instrument cannot be placed operationally, beveling is a popular method used to measure in vitro photosynthesis. However, some studies and our own research have shown that net photosynthesis values measured in vitro are generally significantly lower than values measured in situ. Methods To develop a more accurate and applicable method for in vitro determination of photosynthesis, we evaluated five different methods for preparing detached tree branches to measure photosynthesis and gas exchange in vitro (beveling, cracking, splitting, girdling, and immersion in salicylic acid solution). Ten common tree-species were used. Results By comparing light response curves and water-status data, we found that (1) it is possible, to some extent, to substitute in vitro measurement of photosynthetic characteristics of tree species for in situ measurement, provided a suitable treatment is employed; (2) the beveling method is likely to underestimate photosynthetic potential of some trees; (3) after cracking application, most detached branches effectively continued to absorb water; and (4) measurements obtained using detached tree-branches processed by the cracking method were closer to those obtained in situ in intact trees; (5) some tree species (Diospyros kaki, Eriobotrya japonica) appeared to be particularly sensitive to the cracking method, and their in-vitro maximum net photosynthesis rate (Pmax) was significantly less than the in-situ value (P < 0.05). Discussion Our findings provide a methodological support for comprehensive and accurate measurement of plant functional traits. The use of the cracking method contributes to feasibility and reliability of the measurement of photosynthetic parameters in tall trees, thus providing more accurate photosynthetic parameters for the analysis of trade-off strategies at the leaf level.

Funder

National Natural Science Foundation of China

Shaanxi Science & Technology Co-ordination & Innovation Project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3