Gynomonoecy in a mycoheterotrophic orchid Eulophia zollingeri with autonomous selfing hermaphroditic flowers and putatively outcrossing female flowers

Author:

Suetsugu Kenji1

Affiliation:

1. Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan

Abstract

Most orchid species exhibit an extreme case of hermaphroditism, owing to the fusion of male and female organs into a gynostemium. Exceptions to this rule have only been reported from the subtribes Catasetinae and Satyriinae. Here, I report an additional orchidaceous example whose flowers are not always hermaphroditic. In several Japanese populations of Eulophia zollingeri (Rchb.f.) J.J.Sm, a widespread Asian and Oceanian orchid, some flowers possess both the anther (i.e., anther cap and pollinaria) and stigma, whereas others possess only the stigma. Therefore, pollination experiments, an investigation of floral morphology and observations of floral visitors were conducted to understand the reproductive biology of E. zollingeri in Miyazaki Prefecture, Japan. It was confirmed that E. zollingeri studied here possesses a gynomonoecious reproductive system, a sexual system in which a single plant has both female flowers and hermaphroditic flowers. In addition, hermaphroditic flowers often possess an effective self-pollination system while female flowers could avoid autogamy but suffered from severe pollinator limitation, due to a lack of agamospermy and low insect-mediated pollination. The present study represents the first documented example of gynomonoecy within Orchidaceae. Gynomonoecy in E. zollingeri may be maintained by the tradeoff in reproductive traits between female flowers (with low fruit set but potential outcrossing benefits) and hermaphroditic flowers (with high fruit set but inbreeding depression in selfed offspring). This mixed mating is probably important in mycoheterotrophic E. zollingeri because it occurs in shaded forest understorey with a paucity of pollinators.

Funder

JSPS KAKENHI

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3