High expression of MCM10 is predictive of poor outcomes in lung adenocarcinoma

Author:

Shao Mingrui,Yang Shize,Dong Siyuan

Abstract

Backgrounds Lung adenocarcinoma is a complex disease that results in over 1.8 million deaths a year. Recent advancements in treating and managing lung adenocarcinoma have led to modest decreases in associated mortality rates, owing in part to the multifactorial etiology of the disease. Novel prognostic biomarkers are needed to accurately stage the disease and act as the basis of adjuvant treatments. Material and Methods The microarray datasets GSE75037, GSE31210 and GSE32863 were downloaded from the Gene Expression Omnibus (GEO) database to identify prognostic biomarkers for lung adenocarcinoma and therapy. The differentially expressed genes (DEGs) were identified by GEO2R. Functional and pathway enrichment analysis were performed by Kyoto Encyclopedia of Genes and Genomes and Gene Ontology (GO). Validation was performed based on 72 pairs of lung adenocarcinoma and adjacent normal lung tissues. Results Results showed that the DEGs were mainly focused on cell cycle and DNA replication initiation. Forty-one hub genes were identified and further analyzed by CytoScape. Here, we provide evidence which suggests MCM10 is a potential target with prognostic, diagnostic and therapeutic value. We base this on an integrated approach of comprehensive bioinformatics analysis and in vitro validation using the A549 lung adenocarcinoma cell line. We show that MCM10 overexpression correlates with a poor prognosis, while silencing of this gene decreases aberrant growth by 2-fold. Finally, evaluation of 72 clinical biopsy samples suggests that overexpression of MCM10 in the lung adenocarcinoma highly correlates with larger tumor size. Together, this work suggests that MCM10 may be a clinically relevant gene with both predictive and therapeutic value in lung adenocarcinoma.

Funder

National Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3