imGLAD: accurate detection and quantification of target organisms in metagenomes

Author:

Castro Juan C.12,Rodriguez-R Luis M.13,Harvey William T.2,Weigand Michael R.34,Hatt Janet K.3,Carter Michelle Q.5,Konstantinidis Konstantinos T.123

Affiliation:

1. Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, United States of America

2. School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America

3. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America

4. Division of Bacterial Diseases, Center for Disease Control and Prevention, Atlanta, GA, United States of America

5. Produce Safety and Microbiology, USDA-ARS Western Regional Research Center, US Department of Agriculture, Albany, CA, United States of America

Abstract

Accurate detection of target microbial species in metagenomic datasets from environmental samples remains limited because the limit of detection of current methods is typically inaccessible and the frequency of false-positives, resulting from inadequate identification of regions of the genome that are either too highly conserved to be diagnostic (e.g., rRNA genes) or prone to frequent horizontal genetic exchange (e.g., mobile elements) remains unknown. To overcome these limitations, we introduce imGLAD, which aims to detect (target) genomic sequences in metagenomic datasets. imGLAD achieves high accuracy because it uses the sequence-discrete population concept for discriminating between metagenomic reads originating from the target organism compared to reads from co-occurring close relatives, masks regions of the genome that are not informative using the MyTaxa engine, and models both the sequencing breadth and depth to determine relative abundance and limit of detection. We validated imGLAD by analyzing metagenomic datasets derived from spinach leaves inoculated with the enteric pathogen Escherichia coli O157:H7 and showed that its limit of detection can be comparable to that of PCR-based approaches for these samples (∼1 cell/gram).

Funder

USDA

US National Science Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3