Predicted effects of landscape change, sea level rise, and habitat management on the extirpation risk of the Hawaiian common gallinule (Gallinula galeata sandvicensis) on the island of O‘ahu

Author:

van Rees Charles B.1,Reed J. Michael1

Affiliation:

1. Department of Biology, Tufts University, Medford, MA, United States of America

Abstract

We conducted a spatially explicit, stochastic, individually based population viability analysis for the Hawaiian common gallinule (Gallinula galeata sandvicensis), an endangered subspecies of waterbird endemic to fragmented coastal wetlands in Hawai‘i. This subspecies persists on two islands, with no apparent movement between them. We assessed extirpation risk for birds on O‘ahu, where the resident gallinule population is made up of several fragmented subpopulations. Data on genetic differentiation were used to delineate subpopulations and estimate dispersal rates between them. We used sensitivity analyses to gauge the impact of current uncertainty of vital rate parameters on population projections, to ascertain the relative importance of gallinule vital rates to population persistence, and to compare the efficacy of potential management strategies. We used available sea level rise projections to examine the relative vulnerability of O‘ahu’s gallinule population to habitat loss arising from this threat. Our model predicted persistence of the island’s gallinule population at 160 years (∼40 generations), but with high probabilities of extirpation for small subpopulations. Sensitivity analyses highlighted the importance of juvenile and adult mortality to population persistence in Hawaiian gallinules, justifying current predator control efforts and suggesting the need for additional research on chick and fledgling survival. Subpopulation connectivity from dispersal had little effect on the persistence of the island-wide population, but strong effects on the persistence of smaller subpopulations. Our model also predicted island-wide population persistence under predicted sea level rise scenarios, but with O‘ahu’s largest gallinule populations losing >40% of current carrying capacity.

Funder

Tufts Institute of the Environment

Nuttall Ornithological Club

U.S. Fish and Wildlife Service

Wilson Ornithological Society

Sigma Xi Grants-in-Aid of Research

Tufts Water Diplomacy IGERT

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference100 articles.

1. The extent of extinctions of mammals on islands;Alcover;Journal of Biogeography,1998

2. Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers;Atkinson;Journal of Avian Medicine and Surgery,2009

3. Common Gallinule (Gallinula galeata);Bannor,2002

4. Maximum likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach;Beerli;Genetics,1999

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3