Optimization of aeration enhanced surfactant soil washing for remediation of diesel-contaminated soils using response surface methodology

Author:

Ayele Befkadu Abayneh12,Lu Jun1,Chen Quanyuan13ORCID

Affiliation:

1. State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, P.R. China

2. Department of Natural Resource Management, University of Gondar, Gondar, Ethiopia

3. Shanghai Institution of Pollution Control and Ecological Security, Shanghai, P.R. China

Abstract

Surfactant-enhanced soil washing has been used for remediation of organic pollutants for an extended period, but its effectiveness and wide application was limited by the high concentration of surfactants utilized. In this work, the efficiency of conventional soil washing performance was enhanced by 12–25% through the incorporation of air bubbles into the low concentration surfactant soil washing system. Surfactant selection pre-experiment using aerated and conventional soil washing reveals Brij 35 > TX100 > Tween 80 > Saponin in diesel oil removal. Optimization of the effect of time, surfactant concentration, pH, agitation speed, and airflow rate in five levels were undertaken using Response Surface Methodology and Central composite design. The optimum degree of variables achieved was 90 min of washing time, 370 mg/l of concentration, washing pH of 10,535 rpm of agitation speed and 7.2 l/min of airflow rate with 79.5% diesel removal. The high predicted R2 value of 0.9517 showed that the model could efficiently be used to predict diesel removal efficiency. The variation in efficiency of aeration assisted and conventional soil washing was variable depending on the type of surfactant, organic matter content of the soil, particle size distribution and level of pollutant weathering. The difference in removal efficiency of the two methods increases when the level of organic matter increases and when the particle size and age of contamination decreases.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3