Characterization of ceRNA network to reveal potential prognostic biomarkers in triple-negative breast cancer

Author:

Song Xiang12,Zhang Chao3,Liu Zhaoyun24,Liu Qi45,He Kewen46,Yu Zhiyong2

Affiliation:

1. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China

2. Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China

3. The People’s Hospital of Xintai City, Xintai, Shandong, People’s Republic of China

4. School of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China

5. Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China

6. Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China

Abstract

Triple-negative breast cancer (TNBC) is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Previous studies have demonstrated that some abnormal expression of non-coding RNAs including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were closely related to tumor cell proliferation, apoptosis, invasion, migration and drug sensitivity. However, the role of non-coding RNAs in the pathogenesis of TNBC is still unclear. In order to characterize the molecular mechanism of non-coding RNAs in TNBC, we downloaded RNA data and miRNA data from the cancer genome atlas database. We successfully identified 686 message RNAs (mRNAs), 26 miRNAs and 50 lncRNAs as key molecules for high risk of TNBC. Then, we hypothesized that the lncRNA–miRNA–mRNA regulatory axis positively correlates with TNBC and constructed a competitive endogenous RNA (ceRNA) network of TNBC. Our series of analyses has shown that five molecules (TERT, TRIML2, PHBP4, mir-1-3p, mir-133a-3p) were significantly associated with the prognosis of TNBC, and there is a prognostic ceRNA sub-network between those molecules. We mapped the Kaplan–Meier curve of RNA on the sub-network and also suggested that the expression level of the selected RNA is related to the survival rate of breast cancer. Reverse transcription-quantitative polymerase chain reaction showed that the expression level of TRIML2 in TNBC cells was higher than normal. In general, our findings have implications for predicting metastasis, predicting prognosis and discovering new therapeutic targets for TNBC.

Funder

Natural Science Foundation of Shandong Province

Key Research and Development Plan of Shandong Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3