Assessing the impact of two conventional wastewater treatment plants on small streams with effect-based methods

Author:

Trejos Delgado Catalina1,Dombrowski Andrea1,Oehlmann Jörg12

Affiliation:

1. Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany

2. Kompetenzzentrum Wasser Hessen, Frankfurt, Germany

Abstract

Sixty percent of discrete surface water bodies in Europe do not meet the requirements for good ecological and chemical status and in Germany, the situation is even worse with over 90% of surface water bodies failing to meet the threshold. In addition to hydromorphological degradation, intensive land use and invasive species, chemical pollution is primarily considered to be responsible for the inadequate ecological status of the water bodies. As a quantitatively important source of micropollutants, wastewater treatment plants (WWTPs) represent an important entry path for chemical stressors. It is therefore important to analyze the effectiveness of the WWTPs in eliminating micropollutants and other chemical stressors to mitigate the negative impacts of the treated wastewater (WW) in aquatic ecosystems. Accordingly, in this study, we evaluated the impacts of two conventional, medium-sized WWTPs on their small receiving water systems in the southwestern region of Hessen in Germany during two sampling campaigns (spring and fall) using effect-based methods (EBM). We hypothesized that due to the insufficient elimination of micropollutants, a broad spectrum of toxic effects would be detected in conventionally treated WW and also in the receiving surface waters downstream the WWTPs. As EBMs a battery of in vitro assays and active biomonitoring using two in vivo assays were applied. The results supported our hypothesis and showed that the untreated WW had a very high baseline toxicity and also high endocrine and mutagenic activities. Conventional WW treatment, consisting of mechanical and biological treatment with nitrification, denitrification and phosphate precipitation, reduced baseline toxicity by more than 90% and endocrine activities by more than 80% in both WWTPs. Despite these high elimination rates, the remaining baseline toxicity, the endocrine, dioxin-like and mutagenic activities of the conventionally treated WW were so high that negative effects on the two receiving waters were to be expected. This was confirmed in the active monitoring with the amphipod Gammarus fossarum and the mudsnail Potamopyrgus antipodarum, as mortality of both species increased downstream of the WWTPs and reproduction in P. antipodarum was also affected. These results indicate that advanced WW treatment is needed to more effectively eliminate chemical stressors to prevent negative impacts of treated WW particularly in small receiving waters.

Funder

COLFUTURO-DAAD

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3