Abstract
Drought stress significantly affects plants by altering their physiological and biochemical processes, which can severely limit their growth and development. Similarly, drought has severe negative effects on medicinal plants, which are essential for healthcare. The effects are particularly significant in areas that rely mostly on traditional medicine, which might potentially jeopardize both global health and local economies. Understanding effects of droughts on medicinal plants is essential for developing strategies to enhance plant adaptability to drought stress, which is vital for sustaining agricultural productivity under changing climatic conditions. In this study, a meta-analysis was conducted on 27 studies examining various parameters such as plant yield, chlorophyll content, relative water content, essential oil content, essential oil yield, non-enzymatic antioxidants, enzymatic antioxidants, phenols, flavonoids, and proline content. The analysis explored the effects of drought across different stress conditions (control, moderate, and severe) to gain deeper insights into the drought’s impact. The categorization of these stress conditions was based on field or soil capacity: control (100–80%), moderate (80–50%), and severe (below 50%). This classification was guided by the authors’ descriptions in their studies. According to meta-analysis results, enzymatic antioxidants emerge as the most responsive parameters to stress. Other parameters such as relative water content (RWC) and yield also exhibit considerable negative mean effect sizes under all three stress conditions. Therefore, when evaluating the impacts of drought stress on medicinal plants, it is beneficial to include these three parameters (enzymatic antioxidants, RWC, and yield) in an evaluation of drought stress. The chlorophyll content has been determined not to be a reliable indicator for measuring impact of drought stress. Also, measuring antioxidants such as flavonoids and phenols could be a better option than using radical scavenging methods like DPPH (2, 2-difenil-1-pikrilhidrazil), FRAP (ferric reducing antioxidant power), and ABTS (2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)).