Identification of key genes as potential diagnostic biomarkers in sepsis by bioinformatics analysis

Author:

Lin Guoxin1,Li Nannan23,Liu Jishi23,Sun Jian23,Zhang Hao23,Gui Ming23,Zeng Youjie1,Tang Juan23

Affiliation:

1. Department of Anesthesiology, The Third Xiangya Hospital, Changsha, China

2. Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China

3. Clinical Research Center For Critical Kidney Disease In Hunan Province, Changsha, China

Abstract

Background Sepsis, an infection-triggered inflammatory syndrome, poses a global clinical challenge with limited therapeutic options. Our study is designed to identify potential diagnostic biomarkers of sepsis onset in critically ill patients by bioinformatics analysis. Methods Gene expression profiles of GSE28750 and GSE74224 were obtained from the Gene Expression Omnibus (GEO) database. These datasets were merged, normalized and de-batched. Weighted gene co-expression network analysis (WGCNA) was performed and the gene modules most associated with sepsis were identified as key modules. Functional enrichment analysis of the key module genes was then conducted. Moreover, differentially expressed gene (DEG) analysis was conducted by the “limma” R package. Protein-protein interaction (PPI) network was created using STRING and Cytoscape, and PPI hub genes were identified with the cytoHubba plugin. The PPI hub genes overlapping with the genes in key modules of WGCNA were determined to be the sepsis-related key genes. Subsequently, the key overlapping genes were validated in an external independent dataset and sepsis patients recruited in our hospital. In addition, CIBERSORT analysis evaluated immune cell infiltration and its correlation with key genes. Results By WGCNA, the greenyellow module showed the highest positive correlation with sepsis (0.7, p = 2e − 19). 293 DEGs were identified in the merged datasets. The PPI network was created, and the CytoHubba was used to calculate the top 20 genes based on four algorithms (Degree, EPC, MCC, and MNC). Ultimately, LTF, LCN2, ELANE, MPO and CEACAM8 were identified as key overlapping genes as they appeared in the PPI hub genes and the key module genes of WGCNA. These sepsis-related key genes were validated in an independent external dataset (GSE131761) and sepsis patients recruited in our hospital. Additionally, the immune infiltration profiles differed significantly between sepsis and non-sepsis critical illness groups. Correlations between immune cells and these five key genes were assessed, revealing that plasma cells, macrophages M0, monocytes, T cells regulatory, eosinophils and NK cells resting were simultaneously and significantly associated with more than two key genes. Conclusion This study suggests a critical role of LTF, LCN2, ELANE, MPO and CEACAM8 in sepsis and may provide potential diagnostic biomarkers and therapeutic targets for the treatment of sepsis.

Funder

The Changsha Natural Science Foundation

The National Natural Science Foundation for Distinguished Young Scholars of China

The Natural Sciences Foundation of Hunan Province for Distinguished Young Scholars

The National Natural Science Foundation of China

The Natural Science Foundation of Hunan Province

The Health Commision Fund of Hunan Province

Hunan Province Clinical Medical Technology Innovation Guidance Project

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3