Core proteome mediated subtractive approach for the identification of potential therapeutic drug target against the honeybee pathogen Paenibacillus larvae

Author:

Rebhi Sawsen1,Basharat Zarrin2,Wei Calvin R.3,Lebbal Salim4,Najjaa Hanen5,Sadfi-Zouaoui Najla1,Messaoudi Abdelmonaem16

Affiliation:

1. Université de Tunis-El Manar, Laboratoire de Mycologie, Pathologies et Biomarqueurs, Département de Biologie, Tunis, Tunisia

2. Independent researcher, Islamabad, Pakistan

3. Department of Research and Development, Shing Huei Group, Taipei, Taiwan

4. University of Khenchela, Department of Agricultural Sciences, Faculty of Nature and Life Sciences, Khenchela, Algeria

5. University of Gabes, Laboratory of Pastoral Ecosystem and Valorization of Spontaneous Plants and Associated Microorganisms, Institute of Arid Lands of Medenine, Medenine, Tunisia

6. Jendouba University, Higher Institute of Biotechnology of Beja, Beja, Tunisia

Abstract

Background & Objectives American foulbrood (AFB), caused by the highly virulent, spore-forming bacterium Paenibacillus larvae, poses a significant threat to honey bee brood. The widespread use of antibiotics not only fails to effectively combat the disease but also raises concerns regarding honey safety. The current computational study was attempted to identify a novel therapeutic drug target against P. larvae, a causative agent of American foulbrood disease in honey bee. Methods We investigated effective novel drug targets through a comprehensive in silico pan-proteome and hierarchal subtractive sequence analysis. In total, 14 strains of P. larvae genomes were used to identify core genes. Subsequently, the core proteome was systematically narrowed down to a single protein predicted as the potential drug target. Alphafold software was then employed to predict the 3D structure of the potential drug target. Structural docking was carried out between a library of phytochemicals derived from traditional Chinese flora (n > 36,000) and the potential receptor using Autodock tool 1.5.6. Finally, molecular dynamics (MD) simulation study was conducted using GROMACS to assess the stability of the best-docked ligand. Results Proteome mining led to the identification of Ketoacyl-ACP synthase III as a highly promising therapeutic target, making it a prime candidate for inhibitor screening. The subsequent virtual screening and MD simulation analyses further affirmed the selection of ZINC95910054 as a potent inhibitor, with the lowest binding energy. This finding presents significant promise in the battle against P. larvae. Conclusions Computer aided drug design provides a novel approach for managing American foulbrood in honey bee populations, potentially mitigating its detrimental effects on both bee colonies and the honey industry.

Funder

Ministry of Higher Education and Scientific Research of Tunisia

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3