Affiliation:
1. Grupo de Ecologia Bentônica, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
2. Marítima Estudos Bênticos, Laguna, Santa Catarina, Brazil
Abstract
Background
Sandy beaches are dynamic environments housing a large diversity of organisms and providing important environmental services. Meiofaunal metazoan are small organisms that play a key role in the sediment. Their diversity, distribution and composition are driven by sedimentary and oceanographic parameters. Understanding the diversity patterns of marine meiofauna is critical in a changing world.
Methods
In this study, we investigate if there is seasonal difference in meiofaunal assemblage composition and diversity along 1 year and if the marine seascapes dynamics (water masses with particular biogeochemical features, characterized by temperature, salinity, absolute dynamic topography, chromophoric dissolved organic material, chlorophyll-a, and normalized fluorescent line height), rainfall, and sediment parameters (total organic matter, carbonate, carbohydrate, protein, lipids, protein-to-carbohydrate, carbohydrate-to-lipids, and biopolymeric carbon) affect significatively meiofaunal diversity at a tropical sandy beach. We tested two hypotheses here: (i) meiofaunal diversity is higher during warmer months and its composition changes significatively among seasons along a year at a tropical sandy beach, and (ii) meiofaunal diversity metrics are significantly explained by marine seascapes characteristics and sediment parameters. We used metabarcoding (V9 hypervariable region from 18S gene) from sediment samples to assess the meiofaunal assemblage composition and diversity (phylogenetic diversity and Shannon’s diversity) over a period of 1 year.
Results
Meiofauna was dominated by Crustacea (46% of sequence reads), Annelida (28% of sequence reads) and Nematoda (12% of sequence reads) in periods of the year with high temperatures (>25 °C), high salinity (>31.5 ppt), and calm waters. Our data support our initial hypotheses revealing a higher meiofaunal diversity (phylogenetic and Shannon’s Diversity) and different composition during warmer periods of the year. Meiofaunal diversity was driven by a set of multiple variables, including biological variables (biopolymeric carbon) and organic matter quality (protein content, lipid content, and carbohydrate-to-lipid ratio).
Funder
PELD, PRONEM, PROFIX
Universal grants from Fundação de Amparo à Pesquisa e Inovação do Espirito Santo
Coordenação de Aperfeiçoamento de Pessoal em Nível Superior CAPES
Fundação de Amparo à Pesquisa e Inovação do Espirito Santo