Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process

Author:

Cunha Deivisson Lopes1,Kuznetsov Alexei2,Achete Carlos Alberto2,Machado Antonio Eduardo da Hora3,Marques Marcia1

Affiliation:

1. Department of Sanitary and Environmental Engineering, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

2. Divisão de Metrologia de Materiais-DIMAT, Instituto Nacional de Metrologia, Qualidade e Tecnologia-INMETRO, Duque de Caxias, Rio de Janeiro, Brazil

3. Laboratory of Photochemistry and Materials Science, Institute of Chemistry, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil

Abstract

Heterogeneous photocatalysis using titanium dioxide as catalyst is an attractive advanced oxidation process due to its high chemical stability, good performance and low cost. When immobilized in a supporting material, additional benefits are achieved in the treatment. The purpose of this study was to develop a simple protocol for impregnation of TiO2-P25 on borosilicate glass spheres and evaluate its efficiency in the photocatalytic degradation using an oxidizable substrate (methylene blue), in a Compound Parabolic Concentrator (CPC) reactor. The assays were conducted at lab-scale using radiation, which simulated the solar spectrum. TiO2 leaching from the glass and the catalyst regeneration were both demonstrated. A very low leaching ratio (0.03%) was observed after 24 h of treatment, suggesting that deposition of TiO2 resulted in good adhesion and stability of the photocatalyst on the surface of borosilicate. This deposition was successfully achieved after calcination of the photocatalyst at 400 °C (TiO2-400 °C). The TiO2 film was immobilized on glass spheres and the powder was characterized by scanning electron microscopy (SEM), X-ray diffraction and BET. This characterization suggested that thermal treatment did not introduce substantial changes in the measured microstructural characteristics of the photocatalyst. The immobilized photocatalyst degraded more than 96% of the MB in up to 90 min of reaction. The photocatalytic activity decreased after four photocatalytic cycles, but it was recovered by the removal of contaminants adsorbed on the active sites after washing in water under UV-Vis irradiation. Based on these results, the TiO2-400 °C coated on glass spheres is potentially a very attractive option for removal of persistent contaminants present in the environment.

Funder

Coordination and Improvement of Higher Level or Education Personnel (CAPES) Scholarship Processes

National Council for Scientific and Technological Development (CNPq) Process

Carlos Chagas Filho Research Support Foundation (FAPERJ) Process

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3