High gene flow in the silverlip pearl oyster Pinctada maxima between inshore and offshore sites near Eighty Mile Beach in Western Australia

Author:

Thomas Luke12,Miller Karen J.2

Affiliation:

1. Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia

2. Indian Ocean Marine Research Centre, Australian Institute of Marine Science, Crawley, Australia

Abstract

An understanding of stock recruitment dynamics in fisheries is fundamental to successful management. Pinctada maxima is a bivalve mollusc widely distributed throughout the Indo-Pacific and is the main species targeted for cultured pearl and pearl shell production in Australia. Pearl production in Australia relies heavily on wild-caught individuals, the majority of which come from the Eighty Mile Beach region near Broome in Western Australia. In this study, we used a genotyping by sequencing approach to explore fine-scale patterns of genetic connectivity among inshore shallow and offshore deep populations of P. maxima near Eighty Mile Beach. Our results revealed high-levels of gene flow among inshore and offshore sites and no differences in genetic diversity between depths. Global estimates of genetic differentiation were low (FST = 0.006) but significantly different from zero, and pairwise estimates of genetic differentiation among sites were significant in only 3% of comparisons. Moreover, Bayesian clustering detected no separation of inshore and offshore sample sites, and instead showed all samples to be admixed among sites, locations and depths. Despite an absence of any clear spatial clustering among sites, we identified a significant pattern of isolation by distance. In a dynamic environment like Eighty Mile Beach, genetic structure can change from year-to-year and successive dispersal and recruitment events over generations likely act to homogenize the population. Although we cannot rule out the null hypothesis of panmixia, our data indicate high levels of dispersal and connectivity among inshore and offshore fishing grounds.

Funder

North West Shoals to Shore Program, which is proudly supported by Santos as part of the company’s commitment to better understand WA’s marine environment

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3