Foliar nutrient concentrations of six northern hardwood species responded to nitrogen and phosphorus fertilization but did not predict tree growth

Author:

Hong Daniel S.1,Gonzales Kara E.2,Fahey Timothy J.3,Yanai Ruth D.1

Affiliation:

1. State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States of America

2. California Department of Fish and Wildlife, Sacramento, CA, United States of America

3. Cornell University, Ithaca, NY, United States of America

Abstract

Foliar chemistry can be useful for diagnosing soil nutrient availability and plant nutrient limitation. In northern hardwood forests, foliar responses to nitrogen (N) addition have been more often studied than phosphorus (P) addition, and the interactive effects of N and P addition have rarely been described. In the White Mountains of central New Hampshire, plots in ten forest stands of three age classes across three sites were treated annually beginning in 2011 with 30 kg N ha−1 y−1 or 10 kg P ha−1 y−1 or both or neither–a full factorial design. Green leaves of American beech (Fagus grandifolia Ehrh.), pin cherry (Prunus pensylvanica L.f.), red maple (Acer rubrum L.), sugar maple (A. saccharum Marsh.), white birch (Betula papyrifera Marsh.), and yellow birch (B. alleghaniensis Britton) were sampled pre-treatment and 4–6 years post-treatment in two young stands (last cut between 1988–1990), four mid-aged stands (last cut between 1971–1985) and four mature stands (last cut between 1883–1910). In a factorial analysis of species, stand age class, and nutrient addition, foliar N was 12% higher with N addition (p < 0.001) and foliar P was 45% higher with P addition (p < 0.001). Notably, P addition reduced foliar N concentration by 3% (p = 0.05), and N addition reduced foliar P concentration by 7% (p = 0.002). When both nutrients were added together, foliar P was lower than predicted by the main effects of N and P additions (p = 0.08 for N × P interaction), presumably because addition of N allowed greater use of P for growth. Foliar nutrients did not differ consistently with stand age class (p ≥ 0.11), but tree species differed (p ≤ 0.01), with the pioneer species pin cherry having the highest foliar nutrient concentrations and the greatest responses to nutrient addition. Foliar calcium (Ca) and magnesium (Mg) concentrations, on average, were 10% (p < 0.001) and 5% lower (p = 0.01), respectively, with N addition, but were not affected by P addition (p = 0.35 for Ca and p = 0.93 for Mg). Additions of N and P did not affect foliar potassium (K) concentrations (p = 0.58 for N addition and p = 0.88 for P addition). Pre-treatment foliar N:P ratios were high enough to suggest P limitation, but trees receiving N (p = 0.01), not P (p = 0.64), had higher radial growth rates from 2011 to 2015. The growth response of trees to N or P addition was not explained by pre-treatment foliar N, P, N:P, Ca, Mg, or K.

Funder

USDA National Institute of Food and Agriculture

National Science Foundation

Long-Term Ecological Research Program

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference64 articles.

1. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns;Aerts;Advances in Ecological Research,2000

2. Nitrogen fertilization stimulates germination of dormant pin cherry seed (Prunus pensylvanica);Auchmoody;Canadian Journal of Forest Research,1979

3. Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of New Hampshire;Bae;Ecosystems,2015

4. Hydrometeorological database for Hubbard Brook Experimental Forest: 1955-2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3