Manipulation of light quality is an effective tool to regulate photosynthetic capacity and fruit antioxidant properties of Solanum lycopersicum L. cv. ‘Microtom’ in a controlled environment

Author:

Vitale Ermenegilda1,Velikova Violeta2,Tsonev Tsonko3,Costanzo Giulia1,Paradiso Roberta4,Arena Carmen15ORCID

Affiliation:

1. Department of Biology, University of Naples Federico II, Naples, Italy

2. Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria

3. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria

4. Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy

5. BAT Center-Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy

Abstract

Light quality plays an essential role in setting plant structural and functional traits, including antioxidant compounds. This paper aimed to assess how manipulating the light spectrum during growth may regulate the photosynthetic activity and fruit bioactive compound synthesis in Solanum lycopersicum L. cv. ‘Microtom’ to improve plant physiological performance and fruit nutritional value. Plants were cultivated under three light quality regimes: red-green-blue LEDs (RGB), red-blue LEDs (RB) and white fluorescent lamps (FL), from sowing to fruit ripening. Leaf functional traits, photosynthetic efficiency, Rubisco and D1 protein expression, and antioxidant production in fruits were analyzed. Compared to FL, RGB and RB regimes reduced height and increased leaf number and specific leaf area, enhancing plant dwarf growth. The RGB regime improved photosynthesis and stomatal conductance despite lower biomass, favoring Rubisco synthesis and carboxylation rate than RB and FL regimes. The RB light produced plants with fewer flowers and fruits with a lower ascorbic acid amount but the highest polyphenol content, antioxidant capacity and SOD and CAT activities. Our data indicate that the high percentage of the green wavelength in the RGB regime promoted photosynthesis and reduced plant reproductive capacity compared to FL and RB. Conversely, the RB regime was the best in favoring the production of health-promoting compounds in tomato berries.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3