A new juvenile Yamaceratops (Dinosauria, Ceratopsia) from the Javkhlant Formation (Upper Cretaceous) of Mongolia

Author:

Son Minyoung12ORCID,Lee Yuong-Nam1ORCID,Zorigt Badamkhatan3,Kobayashi Yoshitsugu4,Park Jin-Young1ORCID,Lee Sungjin1ORCID,Kim Su-Hwan1,Lee Kang Young5

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

2. Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, United States

3. Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

4. Hokkaido University Museum, Hokkaido University, Sapporo, Japan

5. Department of Physics Education, Gyeongsang National University, Jinju, South Korea

Abstract

Here we report a new articulated skeleton of Yamaceratops dorngobiensis (MPC-D 100/553) from the Khugenetjavkhlant locality at the Shine Us Khudag (Javkhlant Formation, ?Santonian-Campanian) of the eastern Gobi Desert, Mongolia, which represents the first substantially complete skeleton and the first juvenile individual of this taxon. The specimen includes a nearly complete cranium and large portions of the vertebral column and appendicular skeleton. Its skull is about 2/3 the size of the holotype specimen, based on mandibular length. Its juvenile ontogenetic stage is confirmed by multiple indicators of skeletal and morphological immaturity known in ceratopsians, such as the long-grained surface texture on the long bones, the smooth external surface on the postorbital, open neurocentral sutures of all caudal vertebrae, a large orbit relative to the postorbital and jugal, the low angle of the lacrimal ventral ramus relative to the maxillary teeth row, narrow frontal, and straight ventral edge of the dentary. Osteohistological analysis of MPC-D 100/553 recovered three lines of arrested growth, implying around 3 years of age when it died, and verified this specimen’s immature ontogenetic stage. The specimen adds a new autapomorphy of Yamaceratops, the anteroventral margin of the fungiform dorsal end of the lacrimal being excluded from the antorbital fossa. Furthermore, it shows a unique combination of diagnostic features of some other basal neoceratopsians: the ventrally hooked rostral bone as in Aquilops americanus and very tall middle caudal neural spines about or more than four times as high as the centrum as in Koreaceratops hwaseongensis, Montanoceratops cerorhynchus, and Protoceratops andrewsi. The jugal with the subtemporal ramus deeper than the suborbital ramus as in the holotype specimen is also shared with A. americanus, Liaoceratops yanzigouensis, and juvenile P. andrewsi. Adding 38 new scorings into the recent comprehensive data matrix of basal Neoceratopsia and taking into account the ontogenetically variable characters recovered Y. dorngobiensis as the sister taxon to Euceratopsia (Leptoceratopsidae plus Coronosauria). A second phylogenetic analysis with another matrix for Ceratopsia also supported this position. The new phylogenetic position of Y. dorngobiensis is important in ceratopsian evolution, as this taxon represents one of the basalmost neoceratopsians with a broad, thin frill and hyper-elongated middle caudal neural spines while still being bipedal.

Funder

National Research Foundation of Korea

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3