A multi-reference poly-conformational method for in silico design, optimization, and repositioning of pharmaceutical compounds illustrated for selected SARS-CoV-2 ligands

Author:

Alexandrov Vadim1,Kirpich Alexander2,Kantidze Omar3,Gankin Yuriy3

Affiliation:

1. Liquid Algo LLC, Hopewell Junction, NY, United States of America

2. Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, United States of America

3. Quantori, Cambridge, MA, United States of America

Abstract

Background This work presents a novel computational multi-reference poly-conformational algorithm for design, optimization, and repositioning of pharmaceutical compounds. Methods The algorithm searches for candidates by comparing similarities between conformers of the same compound and identifies target compounds, whose conformers are collectively close to the conformers of each compound in the reference set. Reference compounds may possess highly variable MoAs, which directly, and simultaneously, shape the properties of target candidate compounds. Results The algorithm functionality has been case study validated in silico, by scoring ChEMBL drugs against FDA-approved reference compounds that either have the highest predicted binding affinity to our chosen SARS-CoV-2 targets or are confirmed to be inhibiting such targets in-vivo. All our top scoring ChEMBL compounds also turned out to be either high-affinity ligands to the chosen targets (as confirmed in separate studies) or show significant efficacy, in-vivo, against those selected targets. In addition to method case study validation, in silico search for new compounds within two virtual libraries from the Enamine database is presented. The library’s virtual compounds have been compared to the same set of reference drugs that we used for case study validation: Olaparib, Tadalafil, Ergotamine and Remdesivir. The large reference set of four potential SARS-CoV-2 compounds has been selected, since no drug has been identified to be 100% effective against the virus so far, possibly because each candidate drug was targeting only one, particular MoA. The goal here was to introduce a new methodology for identifying potential candidate(s) that cover multiple MoA-s presented within a set of reference compounds.

Funder

Quantori LLC, publication and patent fees

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19;Drug Metabolism and Personalized Therapy;2023-08-24

2. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19;Drug Metabolism and Personalized Therapy;2023-08-24

3. Gated Recurrent Unit with SMILES2Vec-based Descriptor for Predicting Drug Side Effects: Case Study of Hepatobiliary Disorders;2023 International Conference on Data Science and Its Applications (ICoDSA);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3