Genome-wide identification and analysis of the evolution and expression pattern of the HVA22 gene family in three wild species of tomatoes

Author:

Zhao LaiPeng12,Wang Baike1,Yang Tao1,Yan Huizhuan2,Yu Qinghui1,Wang Juan1

Affiliation:

1. Institute of Horticultural Crops, Xinjiang Academy of Agricultural Science (Key Laboratory of Horticulture Crop Genomics Research and Genetic Improvement in Xinjiang), Urumqi, Xinjiang, China

2. College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China

Abstract

Wild tomato germplasm is a valuable resource for improving biotic and abiotic stresses in tomato breeding. The HVA22 is widely present in eukaryotes and involved in growth and development as well as stress response, such as cold, salt, drought, and biotic stress. In the present study, we identified 45 HVA22 genes in three wild species of tomatoes. The phylogenetic relationships, gene localization to chromosomes, gene structure, gene collinearity, protein interactions, and cis-acting element prediction of all 45 HVA22 genes (14 in Solanum pennellii, 15 in S. pimpinellifolium, and 16 in S. lycopersicoides) were analyzed. The phylogenetic analysis showed that the all HVA22 proteins from the family Solanaceae were divided into three branches. The identified 45 HVA22 genes were grouped into four subfamilies, which displayed similar number of exons and expanded in a fragmentary replication manner. The distribution of HVA22 genes on the chromosomes of the three wild tomato species was also highly similar. RNA-seq and qRT-PCR revealed that HVA22 genes were expressed in different tissues and induced by drought, salt, and phytohormone treatments. These results might be useful for explaining the evolution, expression patterns, and functional divergence of HVA22 genes in Lycopersicon.

Funder

Key Research and development task special project of Xinjiang Uyghur Autonomous Region

Special Incubation Project of Science & Technology Renovation of Xinjiang Academy of Agricultural Sciences

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3