Physiological, biochemical and phytohormone responses of Elymus nutans to α-pinene-induced allelopathy

Author:

Chen Mengci1,Qiao Youming1,Quan Xiaolong1,Shi Huilan2,Duan Zhonghua1

Affiliation:

1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China

2. College of Ecol-Environmental Engineering, Qinghai University, Xining, Qinghai, China

Abstract

The α-pinene is the main allelochemical of many weeds that inhibit the growth of Elymus nutans, an important forage and ecological restoration herbage. However, the response changes of α-pinene-induced allelopathy to E. nutans is still unclear. Here, we investigated the physiological, biochemical and phytohormone changes of E. nutans exposed to different α-pinene concentrations. The α-pinene-stress had no significant effect on height and fresh weight (FW) of seedlings. The water-soluble proteins, the soluble sugars and proline (Pro) strengthened seedlings immunity at 5 and 10 µL L−1 α-pinene. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased at 5 µL L−1 α-pinene to resist stress. APX reduced the membrane lipid peroxidation quickly at 10 µL L−1 α-pinene. The high-activity of peroxidase (POD), APX along with the high level of GSH contributed to the cellular redox equilibrium at 15 µL L−1 α-pinene. The POD, glutathione reductase (GR) activity and glutathione (GSH) level remained stable at 20 µL L−1 α-pinene. The changes in antioxidant enzymes and antioxidants indicated that E. nutans was effective in counteracting the harmful effects generated by hydrogen peroxide (H2O2). The α-pinene caused severe phytotoxic effects in E. nutans seedlings at 15 and 20 µL L−1. Endogenous signal nitric oxide (NO) and cell membrane damage product Pro accumulated in leaves of E. nutans seedlings at 15 and 20 µL L−1 α-pinene, while lipid peroxidation product malondialdehyde (MDA) accumulated. The chlorophylls (Chls), chlorophyll a (Chl a), chlorophyll b (Chl b) content decreased, and biomass of seedlings was severely inhibited at 20 µL L−1 α-pinene. The α-pinene caused phytotoxic effects on E. nutans seedlings mainly through breaking the balance of the membrane system rather than with reactive oxygen species (ROS) productionat 15 and 20 µL L−1 α-pinene. Additionally, phytohormone levels were altered by α-pinene-stress. Abscisic acid (ABA) and indole acetic acid (IAA) of E. nutans seedlings were sensitive to α-pinene. As for the degree of α-pinene stress, salicylic acid (SA) and jasmonic acid (JA) played an important role in resisting allelopathic effects at 15 µL L−1 α-pinene. The ABA, Zeatin, SA, gibberellin 7 (GA7), JA and IAA levels increased at 20 µL L−1 α-pinene. The α-pinene had a greatest impact on ABA and IAA levels. Collectively, our results suggest that E. nutans seedlings were effective in counteracting the harmful effects at 5 and 10 µL L−1 α-pinene, and they were severely stressed at 15 and 20 µL L−1 α-pinene. Our findings provided references for understanding the allelopathic mechanism about allelochemicals to plants.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3