Transcriptome analysis of transcription factors and enzymes involved in monoterpenoid biosynthesis in different chemotypes of Mentha haplocalyx Briq

Author:

An Xin1,Wan Jingqiong2,Jiang Hui2,Liao Yangzhen1,Liu Chang3,Wei Yuan2ORCID,Wen Chongwei2,Ouyang Zhen12ORCID

Affiliation:

1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China

2. School of Pharmacy, Jiangsu University, Zhenjiang, China

3. Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, China

Abstract

Background The main active ingredients of Mentha haplocalyx Briq. essential oils are monoterpenes. According to the component of essential oils, M. haplocalyx can be divided into different chemotypes. Chemotype variation is widespread in Mentha plants but its formation mechanism is unclear. Methods We selected the stable chemotype l-menthol, pulegone, and carvone of M. haplocalyx for transcriptome sequencing. To further investigate the variation of chemotypes, we analyzed the correlation between differential transcription factors (TFs) and key enzymes. Results Fourteen unigenes related to monoterpenoid biosynthesis were identified, among which (+)-pulegone reductase (PR) and (−)-menthol dehydrogenase (MD) were significantly upregulated in l-menthol chemotype and (−)-limonene 6-hydroxylase was significantly upregulated in carvone chemotype. In addition, 2,599 TFs from 66 families were identified from transcriptome data and the differential TFs included 113 TFs from 34 families. The families of bHLH, bZIP, AP2/ERF, MYB, and WRKY were highly correlated with the key enzymes PR, MD, and (−)-limonene 3-hydroxylase (L3OH) in different M. haplocalyx chemotypes (r > 0.85). The results indicate that these TFs regulate the variation of different chemotypes by regulating the expression patterns of PR, MD, and L3OH. The results of this study provide a basis for revealing the molecular mechanism of the formation of different chemotypes and offer strategies for effective breeding and metabolic engineering of different chemotypes in M. haplocalyx.

Funder

Key project at central government level

National Key R&D Program of China “Chinese-Australian” ‘Belt and Road’ Joint Laboratory on Traditional Chinese Medicine

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3