A new method to identifying optimal adjustment strategy when the car cockpit is uncomfortable: optimal state distance method

Author:

Chen Fei123,Shi Hongbo1,Yang Jianjun123,Lai Yu4,Han Jiahao1,Chen Yimeng1

Affiliation:

1. School of Automobile and Transportation, Xihua University, Chengdu, Sichuan Province, China

2. Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu, China

3. Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan, Xihua University, Chengdu, China

4. School of Mechanical Engineering, Xihua University, Chengdu, Sichuan Province, China

Abstract

With the rapid development of the automobile industry, the comfort of the cockpit has become the standard for judging the quality of the car. People have also put forward higher requirements for cockpit comfort. In the process of driving, the cockpit environment will constantly change, and the comfort will also change. When the comprehensive comfort level of the cockpit decreases and the occupants feel uncomfortable, the cockpit comfort should be adjusted. In this article, a cockpit comfort evaluation model is established to realize the evaluation of cockpit comfort. In addition, we elaborate the theory of optimal state distance, where the numerical magnitude of the optimal state distance is used to reflect the extent to which an indicator deviates from its optimal state. Also, a cockpit optimal adjustment strategy identification model is established based on the theory, which can obtain the optimal adjustment strategy in a certain cockpit operating environment, facilitate the timely adjustment of the corresponding actuator, and realize the dynamic monitoring and adjustment of cockpit comfort. This project provides a reference direction for cockpit comfort adjustment, which is of great significance for future research and development of automotive cockpit comfort.

Funder

The Open Research Fund of Sichuan Key Laboratory of Vehicle Measurement, Control and Safety

Sichuan Province Innovation Training Project

Publisher

PeerJ

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3