Identifying defective solar cells in electroluminescence images using deep feature representations

Author:

Al‐Waisy Alaa S.1,Ibrahim Dheyaa Ahmed1,Zebari Dilovan Asaad2,Hammadi Shumoos3,Mohammed Hussam4,Mohammed Mazin Abed5ORCID,Damaševičius Robertas6ORCID

Affiliation:

1. Computer Engineering Techniques Department, Information Technology College, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq

2. Department of Computer Science, College of Science, Nawroz University, Duhok, Kurdistan Region, Iraq

3. Computer Science Department, Al-Ma’aref University College, Ramadi, Anbar, Iraq

4. Computer Center, University of Anbar, Ramadi, Anbar, Iraq

5. Information systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi, Anbar, Iraq

6. Department of Software Engineering, Kaunas University of Technology, Kaunas, Lithuania

Abstract

Electroluminescence (EL) imaging is a technique for acquiring images of photovoltaic (PV) modules and examining them for surface defects. Analysis of EL images has been manually performed by visual inspection of images by experts. This manual procedure is tedious, time-consuming, subjective, and requires deep expert knowledge. In this work, a hybrid and fully-automated classification system is developed for detecting different types of defects in EL images. The system fuses the deep feature representations extracted from two different deep learning models (Inception-V3 and ResNet50) to form more discriminative feature vectors. These feature vectors are then fed into the classifier layer to assign them into one of different types of defects. A large-scale, challenging solar cells dataset composed of 2,624 EL images was used to assess the performance of the proposed system in both the binary classification (functional vs defective) task and multi-class classification (functional, mild, moderate, and severe) task. The proposed system has managed to detect the correct defect type with less than 1 s per image with an accuracy rate of 98.15% and 95.35% in the binary classification and multi-classification task, respectively.

Publisher

PeerJ

Subject

General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3