Self-aware cycle curriculum learning for multiple-choice reading comprehension

Author:

Chen Haihong,Li Yufei

Abstract

Multiple-choice reading comprehension task has recently attracted significant interest. The task provides several options for each question and requires the machine to select one of them as the correct answer. Current approaches normally leverage a pre-training and then fine-tuning procedure that treats data equally, ignoring the difficulty of training examples. To solve this issue, curriculum learning (CL) has shown its effectiveness in improving the performance of models. However, previous methods have two problems with curriculum learning. First, most methods are rule-based, not flexible enough, and usually suitable for specific tasks, such as machine translation. Second, these methods arrange data from easy to hard or from hard to easy and overlook the fact that human beings usually learn from easy to difficult, and from difficult to easy when they make comprehension reading tasks. In this article, we propose a novel Self-Aware Cycle Curriculum Learning (SACCL) approach which can evaluate data difficulty from the model’s perspective and train the model with cycle training strategy. The experiments show that the proposed approach achieves better performance on the C3 dataset than the baseline, which verifies the effectiveness of SACCL.

Funder

Research Program of science and technology at Universities of Inner Mongolia Autonomous Region

Science Foundation for Young Scholars of Chifeng University

Research and Innovation Team of Complex Analysis and Nonlinear Dynamic Systems of Chifeng University

Publisher

PeerJ

Subject

General Computer Science

Reference41 articles.

1. Curriculum learning;Bengio,2009

2. Curriculum learning for face recognition;Büyüktas,2020

3. Does the order of training samples matter? Improving neural data-to-text generation with curriculum learning;Chang,2021

4. A multiple-choice machine reading comprehension model with multi-granularity semantic reasoning;Dai;Applied Sciences,2021

5. BERT: pre-training of deep bidirectional transformers for language understanding;Devlin,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3