Reconstruction of super-resolution from high-resolution remote sensing images based on convolutional neural networks

Author:

Liu Yang1,Xu Hu2,Shi Xiaodong3

Affiliation:

1. Cloud Computing and Big Data Institute, Henan University of Economics and Law, Zhengzhou, Henan, China

2. Henan Key Laboratory of Ecological Environment Protection And Restoration of the Yellow River Basin, Yellow River Institute Of Hydraulic Research, Zhengzhou, Henan, China

3. School of E-commerce and Logistics Management, Henan University of Economics and Law, Zhengzhou, China

Abstract

In this study, a novel algorithm named the Edge-enhanced Generative Adversarial Network (EGAN) is proposed to address the issues of noise corruption and edge fuzziness in the super-resolution of remote sensing images. To build upon the baseline model called Deep Blind Super-Resolution GAN (DBSR-GAN), an edge enhancement module is introduced to enhance the edge information of the images. To enlarge the receptive field of the algorithm, the Mask branch within the edge enhancement structure is further optimized. Moreover, the loss of image consistency is introduced to guide edge reconstruction, and subpixel convolution is employed for upsampling, thus resulting in sharper edge contours and more consistent stylized results. To tackle the low utilization of global information and the reconstruction of super-resolution artifacts in remote sensing images, an alternative algorithm named Nonlocal Module and Artifact Discrimination EGAN (END-GAN) is proposed. The END-GAN introduces a nonlocal module based on the EGAN in the feature extraction stage of the algorithm, enabling better utilization of the internal correlations of remote sensing images and enhancing the algorithm’s capability to extract global target features. Additionally, a method discriminating artifacts is implemented to distinguish between artifacts and reals in reconstructed images. Then, the algorithm is optimized by introducing an artifact loss discrimination alongside the original loss function. Experimental comparisons on two datasets of remote sensing images, NWPUVHR-10 and UCAS-AOD, demonstrate significant improvements in the evaluation indexes when the proposed algorithm is under investigation.

Funder

Henan Provincial Smart Teaching Research Project of Higher Education

Henan Provincial Science and Technology Key Project Foundation

Key Research Project of Colleges and Universities in Henan Province

Henan Provincial Key Laboratory of Ecological Environment Protection and Restoration of the Yellow River Basin Open Research Fund

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3