Detection of protein, starch, oil, and moisture content of corn kernels using one-dimensional convolutional autoencoder and near-infrared spectroscopy

Author:

Cataltas Ozcan1,Tutuncu Kemal1

Affiliation:

1. Faculty of Technology, Selcuk University, Konya, Turkey

Abstract

Background Analysis of the nutritional values and chemical composition of grain products plays an essential role in determining the quality of the products. Near-infrared spectroscopy has attracted the attention of researchers in recent years due to its advantages in the analysis process. However, preprocessing and regression models in near-infrared spectroscopy are usually determined by trial and error. Combining newly popular deep learning algorithms with near-infrared spectroscopy has brought a new perspective to this area. Methods This article presents a new method that combines a one-dimensional convolutional autoencoder with near-infrared spectroscopy to analyze the protein, moisture, oil, and starch content of corn kernels. First, a one-dimensional convolutional autoencoder model was created for three different spectra in the corn dataset. Thirty-two latent variables were obtained for each spectrum, which is a low-dimensional spectrum representation. Multiple linear regression models were built for each target using the latent variables of obtained autoencoder models. Results R2, RMSE, and RMSPE were used to show the performance of the proposed model. The created one-dimensional convolutional autoencoder model achieved a high reconstruction rate with a mean RMSPE value of 1.90% and 2.27% for calibration and prediction sets, respectively. This way, a spectrum with 700 features was converted to only 32 features. The created MLR models which use these features as input were compared to partial least squares regression and principal component regression combined with various preprocessing methods. Experimental results indicate that the proposed method has superior performance, especially in MP5 and MP6 datasets.

Publisher

PeerJ

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3