Towards virtual machine scheduling research based on multi-decision AHP method in the cloud computing platform

Author:

Gu Hangyu,Wang Jinjiang,Yu Junyang,Wang Dan,Li Bohan,He Xin,Yin Xiang

Abstract

Virtual machine scheduling and resource allocation mechanism in the process of dynamic virtual machine consolidation is a promising access to alleviate the cloud data centers of prominent energy consumption and service level agreement violations with improvement in quality of service (QoS). In this article, we propose an efficient algorithm (AESVMP) based on the Analytic Hierarchy Process (AHP) for the virtual machine scheduling in accordance with the measure. Firstly, we take into consideration three key criteria including the host of power consumption, available resource and resource allocation balance ratio, in which the ratio can be calculated by the balance value between overall three-dimensional resource (CPU, RAM, BW) flat surface and resource allocation flat surface (when new migrated virtual machine (VM) consumed the targeted host’s resource). Then, virtual machine placement decision is determined by the application of multi-criteria decision making techniques AHP embedded with the above-mentioned three criteria. Extensive experimental results based on the CloudSim emulator using 10 PlanetLab workloads demonstrate that the proposed approach can reduce the cloud data center of number of migration, service level agreement violation (SLAV), aggregate indicators of energy comsumption (ESV) by an average of 51.76%, 67.4%, 67.6% compared with the cutting-edge method LBVMP, which validates the effectiveness.

Funder

Science and Technology R&D Project of Henan Province

Key Science and Technology Project of Henan Province

Publisher

PeerJ

Subject

General Computer Science

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3