Affiliation:
1. West Anhui University, Lu’an, Anhui, China
2. Lu’an Hospital Affiliated to Anhui Medical University, Lu’an, Anhui, China
Abstract
The facial expression reflects a person’s emotion, cognition, and even physiological or mental state to a large extent. It has important application value in medical treatment, business, criminal investigation, education, and human-computer interaction. Automatic facial expression recognition technology has become an important research topic in computer vision. To solve the problems of insufficient feature extraction, loss of local key information, and low accuracy in facial expression recognition, this article proposes a facial expression recognition network based on attention double branch enhanced fusion. Two parallel branches are used to capture global enhancement features and local attention semantics respectively, and the fusion and complementarity of global and local information is realized through decision-level fusion. The experimental results show that the features extracted by the network are made more complete by fusing and enhancing the global and local features. The proposed method achieves 89.41% and 88.84% expression recognition accuracy on the natural scene face expression datasets RAF-DB and FERPlus, respectively, which is an excellent performance compared with many current methods and demonstrates the effectiveness and superiority of the proposed network model.
Funder
Natural Science Key Project of West Anhui University
Reference54 articles.
1. A novel approach for facial expression recognition;Adil,2019
2. Facial expression recognition intelligent security system for real time surveillance;Al-Modwahi,2012
3. Training deep networks for facial expression recognition with crowd-sourced label distribution;Barsoum,2016
4. Recognition of facial expressions using Gabor wavelets and learning vector quantization;Bashyal;Engineering Applications of Artificial Intelligence,2008
5. A set of selected SIFT features for 3D facial expression recognition;Berretti,2010