Predicting cervical cancer risk probabilities using advanced H20 AutoML and local interpretable model-agnostic explanation techniques

Author:

Prusty Sashikanta1,Patnaik Srikanta2,Dash Sujit Kumar3,Prusty Sushree Gayatri Priyadarsini1,Rautaray Jyotirmayee4,Sahoo Ghanashyam5

Affiliation:

1. Department of Computer Science and Engineering, Siksha O Anusandhan University Institute of Technical Education and Research, Bhubaneswar, Odisha, India

2. Director of IIMT, Interscience Institute of Management and Technology, Bhubaneswar, Odisha, India

3. P & IT, Biju Pattanaik University of Technology, Rourkela, Odisha, India

4. Department of Computer Science, Odisha University of Technology and Research, Bhubaneswar, Odisha, India

5. Department of Computer Science and Engineering, GITA Autonomous College, Bhubaneswaer, Odisha, India

Abstract

Background Cancer is positioned as a major disease, particularly for middle-aged people, which remains a global concern that can develop in the form of abnormal growth of body cells at any place in the human body. Cervical cancer, often known as cervix cancer, is cancer present in the female cervix. In the area where the endocervix (upper two-thirds of the cervix) and ectocervix (lower third of the cervix) meet, the majority of cervical cancers begin. Despite an influx of people entering the healthcare industry, the demand for machine learning (ML) specialists has recently outpaced the supply. To close the gap, user-friendly applications, such as H2O, have made significant progress these days. However, traditional ML techniques handle each stage of the process separately; whereas H2O AutoML can automate a major portion of the ML workflow, such as automatic training and tuning of multiple models within a user-defined timeframe. Methods Thus, novel H2O AutoML with local interpretable model-agnostic explanations (LIME) techniques have been proposed in this research work that enhance the predictability of an ML model in a user-defined timeframe. We herein collected the cervical cancer dataset from the freely available Kaggle repository for our research work. The Stacked Ensembles approach, on the other hand, will automatically train H2O models to create a highly predictive ensemble model that will outperform the AutoML Leaderboard in most instances. The novelty of this research is aimed at training the best model using the AutoML technique that helps in reducing the human effort over traditional ML techniques in less amount of time. Additionally, LIME has been implemented over the H2O AutoML model, to uncover black boxes and to explain every individual prediction in our model. We have evaluated our model performance using the findprediction() function on three different idx values (i.e., 100, 120, and 150) to find the prediction probabilities of two classes for each feature. These experiments have been done in Lenovo core i7 NVidia GeForce 860M GPU laptop in Windows 10 operating system using Python 3.8.3 software on Jupyter 6.4.3 platform. Results The proposed model resulted in the prediction probabilities depending on the features as 87%, 95%, and 87% for class ‘0’ and 13%, 5%, and 13% for class ‘1’ when idx_value=100, 120, and 150 for the first case; 100% for class ‘0’ and 0% for class ‘1’, when idx_value= 10, 12, and 15 respectively. Additionally, a comparative analysis has been drawn where our proposed model outperforms previous results found in cervical cancer research.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3