Affiliation:
1. Engineering Research Center for Forestry-oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing, China
2. School of Information Science and Technology, Beijing Forestry University, Beijing, China
3. State Key Laboratory of Efficient Production of Forest Resources, Beijing, China
Abstract
As the diversity and volume of images continue to grow, the demand for efficient fine-grained image retrieval has surged across numerous fields. However, the current deep learning-based approaches to fine-grained image retrieval often concentrate solely on the top-layer features, neglecting the relevant information carried in the middle layer, even though these information contains more fine-grained identification content. Moreover, these methods typically employ a uniform weighting strategy during hash code mapping, risking the loss of critical region mapping—an irreversible detriment to fine-grained retrieval tasks. To address the above problems, we propose a novel method for fine-grained image retrieval that leverage feature fusion and hash mapping techniques. Our approach harnesses a multi-level feature cascade, emphasizing not just top-layer but also intermediate-layer image features, and integrates a feature fusion module at each level to enhance the extraction of discriminative information. In addition, we introduce an agent self-attention architecture, marking its first application in this context, which steers the model to prioritize on long-range features, further avoiding the loss of critical regions of the mapping. Finally, our proposed model significantly outperforms existing state-of-the-art, improving the retrieval accuracy by an average of 40% for the 12-bit dataset, 22% for the 24-bit dataset, 16% for the 32-bit dataset, and 11% for the 48-bit dataset across five publicly available fine-grained datasets. We also validate the generalization ability and performance stability of our proposed method by another five datasets and statistical significance tests. Our code can be downloaded from https://github.com/BJFU-CS2012/MuiltNet.git.
Funder
The National Key R&D Program of China
The Emergency Open Competition Project of National Forestry and Grassland Administration
Outstanding Youth Team Project of Central Universities