Multi-FusNet: fusion mapping of features for fine-grained image retrieval networks

Author:

Cui Xiaohui12,Li Huan12,Liu Lei12,Wang Sheng12,Xu Fu123

Affiliation:

1. Engineering Research Center for Forestry-oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing, China

2. School of Information Science and Technology, Beijing Forestry University, Beijing, China

3. State Key Laboratory of Efficient Production of Forest Resources, Beijing, China

Abstract

As the diversity and volume of images continue to grow, the demand for efficient fine-grained image retrieval has surged across numerous fields. However, the current deep learning-based approaches to fine-grained image retrieval often concentrate solely on the top-layer features, neglecting the relevant information carried in the middle layer, even though these information contains more fine-grained identification content. Moreover, these methods typically employ a uniform weighting strategy during hash code mapping, risking the loss of critical region mapping—an irreversible detriment to fine-grained retrieval tasks. To address the above problems, we propose a novel method for fine-grained image retrieval that leverage feature fusion and hash mapping techniques. Our approach harnesses a multi-level feature cascade, emphasizing not just top-layer but also intermediate-layer image features, and integrates a feature fusion module at each level to enhance the extraction of discriminative information. In addition, we introduce an agent self-attention architecture, marking its first application in this context, which steers the model to prioritize on long-range features, further avoiding the loss of critical regions of the mapping. Finally, our proposed model significantly outperforms existing state-of-the-art, improving the retrieval accuracy by an average of 40% for the 12-bit dataset, 22% for the 24-bit dataset, 16% for the 32-bit dataset, and 11% for the 48-bit dataset across five publicly available fine-grained datasets. We also validate the generalization ability and performance stability of our proposed method by another five datasets and statistical significance tests. Our code can be downloaded from https://github.com/BJFU-CS2012/MuiltNet.git.

Funder

The National Key R&D Program of China

The Emergency Open Competition Project of National Forestry and Grassland Administration

Outstanding Youth Team Project of Central Universities

Publisher

PeerJ

Reference82 articles.

1. Content-based image retrieval with compact deep convolutional features;Alzu’bi;Neurocomputing,2017

2. Image coding using wavelet transform;Antonini;IEEE Transactions on Image Processing,1992

3. Animal Iimage Dataset (90 Different Animals);Banerjee,2022

4. Food-101–mining discriminative components with random forests;Bossard,2014

5. Robust learning from noisy web data for fine-grained recognition;Cai;Pattern Recognition,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3