Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images

Author:

Shen Xiaole1,Guo Yiquan1,Cao Jinzhou1

Affiliation:

1. College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China

Abstract

Multiscale segmentation (MSS) is crucial in object-based image analysis methods (OBIA). How to describe the underlying features of remote sensing images and combine multiple features for object-based multiscale image segmentation is a hotspot in the field of OBIA. Traditional object-based segmentation methods mostly use spectral and shape features of remote sensing images and pay less attention to texture and edge features. We analyze traditional image segmentation methods and object-based MSS methods. Then, on the basis of comparing image texture feature description methods, a method for remote sensing image texture feature description based on time-frequency analysis is proposed. In addition, a method for measuring the texture heterogeneity of image objects is constructed on this basis. Using bottom-up region merging as an MSS strategy, an object-based MSS algorithm for remote sensing images combined with texture feature is proposed. Finally, based on the edge feature of remote sensing images, a description method of remote sensing image edge intensity and an edge fusion cost criterion are proposed. Combined with the heterogeneity criterion, an object-based MSS algorithm combining spectral, shape, texture, and edge features is proposed. Experiment results show that the comprehensive features object-based MSS algorithm proposed in this article can obtain more complete segmentation objects when segmenting ground objects with rich texture information and slender shapes and is not prone to over-segmentation. Compare with the traditional object-based segmentation algorithm, the average accuracy of the algorithm is increased by 4.54%, and the region ratio is close to 1, which will be more conducive to the subsequent processing and analysis of remote sensing images. In addition, the object-based MSS algorithm proposed in this article can effectively obtain more complete ground objects and can be widely used in scenes such as building extraction.

Funder

The National Natural Science Foundation of China

Shenzhen Technology University

Publisher

PeerJ

Subject

General Computer Science

Reference27 articles.

1. Hierarchy in picture segmentation: a stepwise optimization approach;Beaulieu;IEEE Transactions on Pattern Analysis and Machine Intelligence,1989

2. A computational approach to edge detection;Canny;IEEE Transactions on Pattern Analysis and Machine Intelligence,1986

3. Assessment of very high spatial resolution satellite image segmentations;Carleer;Photogrammetric Engineering & Remote Sensing,2005

4. Multi-scale segmentation of high resolution remote sensing images By integrating multiple features;Di;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2017

5. Multiscale and multifeature segmentation of high-spatial resolution remote sensing images using superpixels with mutual optimal strategy;Fu;Remote Sensing,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3