Affiliation:
1. College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
Abstract
Multiscale segmentation (MSS) is crucial in object-based image analysis methods (OBIA). How to describe the underlying features of remote sensing images and combine multiple features for object-based multiscale image segmentation is a hotspot in the field of OBIA. Traditional object-based segmentation methods mostly use spectral and shape features of remote sensing images and pay less attention to texture and edge features. We analyze traditional image segmentation methods and object-based MSS methods. Then, on the basis of comparing image texture feature description methods, a method for remote sensing image texture feature description based on time-frequency analysis is proposed. In addition, a method for measuring the texture heterogeneity of image objects is constructed on this basis. Using bottom-up region merging as an MSS strategy, an object-based MSS algorithm for remote sensing images combined with texture feature is proposed. Finally, based on the edge feature of remote sensing images, a description method of remote sensing image edge intensity and an edge fusion cost criterion are proposed. Combined with the heterogeneity criterion, an object-based MSS algorithm combining spectral, shape, texture, and edge features is proposed. Experiment results show that the comprehensive features object-based MSS algorithm proposed in this article can obtain more complete segmentation objects when segmenting ground objects with rich texture information and slender shapes and is not prone to over-segmentation. Compare with the traditional object-based segmentation algorithm, the average accuracy of the algorithm is increased by 4.54%, and the region ratio is close to 1, which will be more conducive to the subsequent processing and analysis of remote sensing images. In addition, the object-based MSS algorithm proposed in this article can effectively obtain more complete ground objects and can be widely used in scenes such as building extraction.
Funder
The National Natural Science Foundation of China
Shenzhen Technology University
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献