A new model for learning-based forecasting procedure by combining k-means clustering and time series forecasting algorithms

Author:

Hartomo Kristoko Dwi1,Nataliani Yessica1

Affiliation:

1. Department of Information System, Faculty of Information Technology, Satya Wacana Christian University, Salatiga, Central of Java, Indonesia

Abstract

This paper aims to propose a new model for time series forecasting that combines forecasting with clustering algorithm. It introduces a new scheme to improve the forecasting results by grouping the time series data using k-means clustering algorithm. It utilizes the clustering result to get the forecasting data. There are usually some user-defined parameters affecting the forecasting results, therefore, a learning-based procedure is proposed to estimate the parameters that will be used for forecasting. This parameter value is computed in the algorithm simultaneously. The result of the experiment compared to other forecasting algorithms demonstrates good results for the proposed model. It has the smallest mean squared error of 13,007.91 and the average improvement rate of 19.83%.

Funder

Education and Culture Ministry Republic Indonesia

Publisher

PeerJ

Subject

General Computer Science

Reference68 articles.

1. Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation;Bergmeir;International Journal of Forecasting,2016

2. Automated time series forecasting for biosurveillance;Burkom;Statistics in Medicine,2007

3. Using feed forward BPNN for forecasting all share price index;Chen;Journal of Data Analysis and Information Processing,2014

4. Large group activity security risk assessment and risk early warning based on random forest algorithm;Chen;Pattern Recognition Letters,2021

5. Grey prediction GM (1, 1 ) model for forecasting demand of planned spare parts in navy of Taiwan;Chiou;MCDM,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3