Mining software insights: uncovering the frequently occurring issues in low-rating software applications

Author:

Khan Nek Dil1,Khan Javed Ali2ORCID,Li Jianqiang1,Ullah Tahir3,Zhao Qing1

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing, China

2. Department of Computer Science, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom

3. Faculty of Computer Science and Technology, Beijing Institute of Technology, Haidian, Beijing, China

Abstract

In today’s digital world, app stores have become an essential part of software distribution, providing customers with a wide range of applications and opportunities for software developers to showcase their work. This study elaborates on the importance of end-user feedback for software evolution. However, in the literature, more emphasis has been given to high-rating & popular software apps while ignoring comparatively low-rating apps. Therefore, the proposed approach focuses on end-user reviews collected from 64 low-rated apps representing 14 categories in the Amazon App Store. We critically analyze feedback from low-rating apps and developed a grounded theory to identify various concepts important for software evolution and improving its quality including user interface (UI) and user experience (UX), functionality and features, compatibility and device-specific, performance and stability, customer support and responsiveness and security and privacy issues. Then, using a grounded theory and content analysis approach, a novel research dataset is curated to evaluate the performance of baseline machine learning (ML), and state-of-the-art deep learning (DL) algorithms in automatically classifying end-user feedback into frequently occurring issues. Various natural language processing and feature engineering techniques are utilized for improving and optimizing the performance of ML and DL classifiers. Also, an experimental study comparing various ML and DL algorithms, including multinomial naive Bayes (MNB), logistic regression (LR), random forest (RF), multi-layer perception (MLP), k-nearest neighbors (KNN), AdaBoost, Voting, convolutional neural network (CNN), long short-term memory (LSTM), bidirectional long short term memory (BiLSTM), gated recurrent unit (GRU), bidirectional gated recurrent unit (BiGRU), and recurrent neural network (RNN) classifiers, achieved satisfactory results in classifying end-user feedback to commonly occurring issues. Whereas, MLP, RF, BiGRU, GRU, CNN, LSTM, and Classifiers achieved average accuracies of 94%, 94%, 92%, 91%, 90%, 89%, and 89%, respectively. We employed the SHAP approach to identify the critical features associated with each issue type to enhance the explainability of the classifiers. This research sheds light on areas needing improvement in low-rated apps and opens up new avenues for developers to improve software quality based on user feedback.

Publisher

PeerJ

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3