Identifying optical microscope images of CVD-grown two-dimensional MoS2 by convolutional neural networks and transfer learning

Author:

Perkgoz Cahit1

Affiliation:

1. Department of Computer Engineering, Eskisehir Technical University, Eskişehir, Turkey

Abstract

Background In Complementary Metal-Oxide Semiconductor (CMOS) technology, scaling down has been a key strategy to improve chip performance and reduce power losses. However, challenges such as sub-threshold leakage and gate leakage, resulting from short-channel effects, contribute to an increase in distributed static power. Two-dimensional transition metal dichalcogenides (2D TMDs) emerge as potential solutions, serving as channel materials with steep sub-threshold swings and lower power consumption. However, the production and development of these 2-dimensional materials require some time-consuming tasks. In order to employ them in different fields, including chip technology, it is crucial to ensure that their production meets the required standards of quality and uniformity; in this context, deep learning techniques show significant potential. Methods This research introduces a transfer learning-based deep convolutional neural network (CNN) to classify chemical vapor deposition (CVD) grown molybdenum disulfide (MoS2) flakes based on their uniformity or the occurrence of defects affecting electronic properties. Acquiring and labeling a sufficient number of microscope images for CNN training may not be realistic. To address this challenge, artificial images were generated using Fresnel equations to pre-train the CNN. Subsequently, accuracy was improved through fine-tuning with a limited set of real images. Results The proposed transfer learning-based CNN method significantly improved all measurement metrics with respect to the ordinary CNNs. The initial CNN, trained with limited data and without transfer learning, achieved 68% average accuracy for binary classification. Through transfer learning and artificial images, the same CNN achieved 85% average accuracy, demonstrating an average increase of approximately 17%. While this study specifically focuses on MoS2 structures, the same methodology can be extended to other 2-dimensional materials by simply incorporating their specific parameters when generating artificial images.

Funder

The Eskisehir Technical University Scientific Research Projects Commission

Publisher

PeerJ

Reference53 articles.

1. Identifying defective solar cells in electroluminescence images using deep feature representations;Al-Waisy;PeerJ Computer Science,2022

2. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions;Alzubaidi;Journal of Big Data,2021

3. Deep learning for material synthesis and manufacturing systems: a review;Bhuvaneswari;Materials Today: Proceedings,2021

4. Making graphene visible;Blake;Applied Physics Letters,2007

5. Production and processing of graphene and 2d crystals;Bonaccorso;Materials Today,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3