Few-shot short utterance speaker verification using meta-learning

Author:

Wang Weijie1,Zhao Hong1,Yang Yikun2,Chang YouKang1,You Haojie1

Affiliation:

1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China

2. School of Information Science & Engineering, Lanzhou University, Lanzhou, China

Abstract

Short utterance speaker verification (SV) in the actual application is the task of accepting or rejecting the identity claim of a speaker based on a few enrollment utterances. Traditional methods have used deep neural networks to extract speaker representations for verification. Recently, several meta-learning approaches have learned a deep distance metric to distinguish speakers within meta-tasks. Among them, a prototypical network learns a metric space that may be used to compute the distance to the prototype center of speakers, in order to classify speaker identity. We use emphasized channel attention, propagation and aggregation in TDNN (ECAPA-TDNN) to implement the necessary function for the prototypical network, which is a nonlinear mapping from the input space to the metric space for either few-shot SV task. In addition, optimizing only for speakers in given meta-tasks cannot be sufficient to learn distinctive speaker features. Thus, we used an episodic training strategy, in which the classes of the support and query sets correspond to the classes of the entire training set, further improving the model performance. The proposed model outperforms comparison models on the VoxCeleb1 dataset and has a wide range of practical applications.

Funder

The National Science Foundation of China

The Science and Technology project of Gansu Province

The Gansu Province Department of Education: Outstanding Graduate Student “Innovation Star” Project

Publisher

PeerJ

Subject

General Computer Science

Reference45 articles.

1. Automatic speaker verification from affective speech using Gaussian mixture model based estimation of neutral speech characteristics;Avila;Speech Communication,2021

2. Speaker recognition based on deep learning: an overview;Bai;Neural Networks,2021

3. Meta-learning with task-adaptive loss function for few-shot learning;Baik,2021

4. Exploring the encoding layer and loss function in end-to-end speaker and language recognition system;Cai,2018

5. MGNet: mutual-guidance network for few-shot semantic segmentation;Chang;Engineering Applications of Artificial Intelligence,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3