Effect of oxide scale structure on shot-blasting of hot-rolled strip steel

Author:

Wang Xiaochen1,Ai Rui1,Yang Quan1,Wang Shang2,Zhang Yanjie1,Meng Yingying1,Ma Xianghong3

Affiliation:

1. School of Engineering Technology Research, University of Science and Technology Beijing, Beijing, China

2. School of Automotive Engineering, Beijing Polytechnic, Beijing, China

3. School of Engineering and Applied Science, Aston University, Birmingham, UK

Abstract

Background The effect of oxide scale composition of hot-rolled strip (Q235) on shot blasting is studied in this article. The properties of the oxide scale on the strip surface change during storage. The shot blasting is an important on-line acid-less descaling technology. The effect of shot blasting is affected by many factors, among which the composition of oxide scale may play an important role. However, there are few studies on the relationship between the oxide layer content and the descaling effect. Methods The morphologies of oxide scales at different storage times are observed by scanning electron microscopy (SEM), and the compositions are analyzed by X-ray diffraction. These strips are then shot blasted and descaled with different amounts of abrasive, and the descaling effects are compared by SEM. Results The results show that the eutectoid structure Fe3O4/Fe in the oxide scale will gradually transform into Fe3O4. In the case of short storage time, the content of the eutectoid structure is high, and it is difficult to remove the oxide scale. While the strip with a long storage time has no eutectoid structure Fe3O4/Fe and FeO, it is easy to remove the oxide scale during the shot blasting process. The composition of the oxide scale has a significant effect on the effect of shot blasting, and it provides significant guidance to the optimization of the descaling process parameters.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

PeerJ

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Cerium on High-Temperature Oxidation Behaviour of Low-Carbon Steel;Proceedings of the International Conference on Metallurgical Engineering and Centenary Celebration;2023-10-15

2. Dry Ice Blasting Method as a Descaling;Bitlis Eren Üniversitesi Fen Bilimleri Dergisi;2023-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3