Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites

Author:

Tariq Muhammad1,Waseem Muhammad1,Rasool Muhammad Hidayat1,Zahoor Muhammad Asif1,Hussain Irshad2

Affiliation:

1. Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan

2. Department of Chemistry and Chemical Engineering, The Lahore University of Management Sciences (LUMS), Lahore, Punjab, Pakistan

Abstract

Background Urbanization and industrialization are the main anthropogenic activities that are adding toxic heavy metals to the environment. Among these, chromium (in hexavalent: Cr+6 and/or trivalent Cr+3) is being released abundantly in wastewater due to its uses in different industrial processes. It becomes highly mutagenic and carcinogenic once it enters the cell through sulfate uptake pathways after interacting with cellular proteins and nucleic acids. However, Cr+6 can be bio-converted into more stable, less toxic and insoluble trivalent chromium using microbes. Hence in this study, we have made efforts to utilize chromium tolerant bacteria for bio-reduction of Cr+6 to Cr+3. Methods Bacterial isolate, K1, from metal contaminated industrial effluent from Kala Shah Kaku-Lahore Pakistan, which tolerated up to 22 mM of Cr6+ was evaluated for chromate reduction. It was further characterized biochemically and molecularly by VITEK®2 system and 16S rRNA gene sequencing respectively. Other factors affecting the reduction of chromium such as initial chromate ion concentration, pH, temperature, contact-time were also investigated. The role of cellular surface in sorption of Cr6+ ion was analyzed by FTIR spectroscopy. Results Both biochemical and phylogenetic analyses confirmed that strain K1 was Staphylococcusaureus that could reduce 99% of Cr6+ in 24 hours at 35 °C (pH = 8.0; initial Cr6+ concentration = 100 mg/L). FTIR results assumed that carboxyl, amino and phosphate groups of cell wall were involved in complexation with chromium. Our results suggested that Staphylococcusaureus K1 could be a promising gram-positive bacterium that might be utilized to remove chromium from metal polluted environments.

Funder

Higher Education Commission of Pakistan

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3