Shedding light on the Ophel biome: the trans-Tethyan phylogeography of the sulfide shrimp Tethysbaena (Peracarida: Thermosbaenacea) in the Levant

Author:

Guy-Haim Tamar1,Kolodny Oren2,Frumkin Amos3,Achituv Yair4,Velasquez Ximena1,Morov Arseniy R.1

Affiliation:

1. National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel

2. Department of Ecology, Evolution, and Behavior, Institute for Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

3. Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

4. The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel

Abstract

Background Tethysbaena are small peracarid crustaceans inhabiting extreme environments such as subterranean lakes and thermal springs, represented by endemic species found around the ancient Tethys, including the Mediterranean, Arabian Sea, Mid-East Atlantic, and the Caribbean Sea. Two Tethysbaena species are known from the Levant: T. relicta, found along the Dead Sea-Jordan Rift Valley, and T. ophelicola, found in the Ayyalon cave complex in the Israeli coastal plain, both belonging to the same species-group based on morphological cladistics. Along the biospeleological research of the Levantine subterranean fauna, three biogeographic hypotheses determining their origins were proposed: (1) Pliocenic transgression, (2) Mid-late Miocenic transgression, and (3) The Ophel Paradigm, according to which these are inhabitants of a chemosynthetic biome as old as the Cambrian. Methods Tethysbaena specimens of the two Levantine species were collected from subterranean groundwaters. We used the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear ribosomal 28S (28S rRNA) gene to establish the phylogeny of the Levantine Tethysbaena species, and applied a molecular clock approach for inferring their divergence times. Results Contrary to the morphological cladistic-based classification, we found that T. relicta shares an ancestor with Tethysbaena species from Oman and the Dominican Republic, whereas the circum-Mediterranean species (including T. ophelicola) share another ancestor. The mean age of the node linking T. relicta from the Dead Sea-Jordan Rift Valley and Tethysbaena from Oman was 20.13 MYA. The mean estimate for the divergence of T. ophelicola from the Mediterranean Tethysbaena clade dated to 9.46 MYA. Conclusions Our results indicate a two-stage colonization of Tethysbaena in the Levant: a late Oligocene transgression, through a marine gulf extending from the Arabian Sea, leading to the colonization of T. relicta in the Dead Sea-Jordan Rift Valley, whereas T. ophelicola, originating from the Mesogean ancestor, inhabited anchialine caves in the coastal plain of Israel during the Mid-Miocene.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3