The accuracy of Fiber-Optic Raman Spectroscopy in the detection and diagnosis of head and neck neoplasm in vivo: a systematic review and meta-analysis

Author:

Chen Wen1,Chen Yafei2,Wu Chenzhou2,Zhang Xidong3,Huang Xiaofeng1

Affiliation:

1. Department of Stomatology and Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China

2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China

3. Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China

Abstract

Purpose The aim of this article was to review and collectively assess the published studies of fiber-optic Raman spectroscopy (RS) of the in vivo detection and diagnosis of head and neck carcinomas, and to derive a consensus average of the accuracy, sensitivity and specificity. Methods The authors searched four databases, including Ovid-Medline, Ovid-Embase, Cochrane Library, and the China National Knowledge Infrastructure (CNKI), up to February 2023 for all published studies that assessed the diagnostic accuracy of fiber-optic RS in the in vivo detection of head and neck carcinomas. Nonqualifying studies were screened out in accordance with the specified exclusion criteria, and relevant information about the diagnostic performance of fiber-optic RS was excluded. Publication bias was estimated by Deeks’ funnel plot asymmetry test. A random effects model was adopted to calculate the pooled sensitivity, specificity and diagnostic odds ratio (DOR). Additionally, the authors conducted a summary receiver operating characteristic (SROC) curve analysis and threshold analysis, reporting the area under the curve (AUC) to evaluate the overall performance of fiber-optic RS in vivo. Results Ten studies (including 16 groups of data) were included in this article, and a total of 5365 in vivo Raman spectra (cancer = 1,746; normal = 3,619) were acquired from 877 patients. The pooled sensitivity and specificity of fiber-optic RS of head and neck carcinomas were 0.88 and 0.94, respectively. SROC curves were generated to estimate the overall diagnostic accuracy, and the AUC was 0.96 (95% CI [0.94–0.97]). No significant publication bias was found in this meta-analysis by Deeks’ funnel plot asymmetry test. The heterogeneity of these studies was significant; the Q test values of the sensitivity and specificity were 106.23 (P = 0.00) and 64.21 (P = 0.00), respectively, and the I2 index of the sensitivity and specificity were 85.88 (95% CI [79.99–91.77]) and 76.64 (95% CI [65.45–87.83]), respectively. Conclusion Fiber-optic RS was demonstrated to be a reliable technique for the in vivo detection of head and neck carcinoma with high accuracy. However, considering the high heterogeneity of these studies, more clinical studies are needed to reduce the heterogeneity, and further confirm the utility of fiber-optic Raman spectroscopy in vivo.

Funder

Natural Science Foundation of Sichuan

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3