Screening of camphene as a potential inhibitor targeting SARS-CoV-2 various structural and functional mutants: Through reverse docking approach

Author:

Savita Mahendra Kumar12ORCID,Bora Neha3ORCID,Singh Ruby4ORCID,Srivastava Prachi2ORCID

Affiliation:

1. Naraina Vidyapeeth Engineering and Management Institute, Kanpur, UP, India -208020

2. Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus 226028

3. Institute of Forensic Science and Criminology, Bundelkhand University, Jhansi, U.P. 284128

4. Crazy fox creation, Vineet Khand, Gomti Nagar, Lucknow, UP, India-226010

Abstract

Background: SARS-CoV was first identified in 2003 but SARS-CoV-2, which gained its recognition again in 2019 as COVID-19, has been a crucial threat worldwide and has caused more death rates than the SARS-CoV but till now no confined treatments are available. The present study aimed to investigate the efficacy of camphene against various structural and functional mutants of SARS-CoV-2 using reverse docking protocol. Methods: To investigate the efficacy of camphene as a potential antiviral drug against COVID-19, against of all possible target proteins in SARS-CoV-2, which could lead to a new platform for drug discovery. Reverse pharmacology (Reverse docking) approach was performed, which involved docking of camphene and 20 structural and non-structural proteins (NSPs) of SARS-CoV-2 performed using maestro 12.8 of Schrödinger. Results: The results were evaluated since the minimum binding energy obtained after docking and camphene was effective against most of the proteins responsible for SARS-CoV-2, but camphene showed greater efficacy against the main protease (protease 9), which is main functional protein of SARS-CoV-2. Hence, the study proves that camphene can be a good drug candidate for different mutants of SARS-CoV-2. Conclusion: Protease 9, which is the main functional protein of SARS-CoV-2, expressed the best binding affinity with camphene having the minimum binding energy (-5.616). Hence, it is concluded that camphene could be the drug contender against protease 9 as it is a more potent target in SARS-CoV-2. This could be a major finding, as camphene is related to camphor, which is already very beneficial against many respiratory problems.

Publisher

Maad Rayan Publishing Company

Subject

Chemical Health and Safety,Public Health, Environmental and Occupational Health,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3