Antibacterial Effect of Low-Level Laser (Diode 405 nm) on Antibiotic-Resistant Enterococci Clinical Isolates (In Vitro)

Author:

Khavari Rahimeh1,Massudi Reza2,Karmostaji Afsaneh3,Soleimani Neda4,Ashkeshi Pantea5,Rezaei-Pandari Mohammad2

Affiliation:

1. Department of Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

2. Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran

3. Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

4. Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

5. Department of Biology and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Background: Enterococcus is a part of normal gastrointestinal flora in human body. Nevertheless, antibiotic-resistant Enterococcus (ARE) is considered a key factor in nosocomial infections which result in a considerable increase in the rate of patient death due to referring of numerous patients to health centers annually, or lead to extended disease convalescence. Objective: This study aimed to evaluate the bactericidal effect at 405nm diode at a laser power of 30 mW on ARE viability of clinical infections. Materials and Methods: In the present study, 30 isolates underwent antibiotic susceptibility test (AST) in which sensitivity to piperacillin (100 µg), rifampin (5 µg), and oxacillin (1 µg) were measured based on the Clinical and Laboratory Standards Institute (CLSI) guidelines. Afterwards, ten most resistant isolates were selected and irradiated by a 405 nm diode laser at a power of 30 mW for 180 and 240 seconds. The data were reported statistically as mean ± standard deviation, and the analysis of the data on varied bacteria was performed using ANOVA. The result was evaluated by SPSS software and P value ≤0.05 was interpreted to be significant. Results: Bacterial viability decreased unsteadily to 10 resistant isolates. Moreover, enhancing irradiation time caused a lower viability rate in such a way that the viability of isolate 9 having the lowest viability rate was reduced from 2.94% in 180 seconds to 0.58% in 240 seconds. The result was evaluated by SPSS software and P value was determined to be significant, and P≤0.05 was laser irradiation for either 180 s or 240 s. Conclusion: Following the study results, 405 nm diode laser could be applied as a tool for eliminating clinical ARE, and it was useful for preventing hospital-acquired infections.

Publisher

Maad Rayan Publishing Company

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3