An overview of the chemistry and anticancer properties of rosemary extract and its diterpenes

Author:

Chan Eric Wei Chiang1ORCID,Wong Siu Kuin2ORCID,Chan Hung Tuck3ORCID

Affiliation:

1. Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia

2. School of Foundation Studies, Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia

3. Secretariat of International Society for Mangrove Ecosystems (ISME), Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan

Abstract

Rosemary (Rosmarinus officinalis L.), a culinary herb of the family Lamiaceae, has promising anticancer activity. This overview has updated the current knowledge on the chemistry and anticancer properties of rosemary extract, carnosic acid, carnosol, and rosmanol, focusing on colon and prostate cancer cells since they are the most susceptible. The information was procured from Google, Google Scholar, PubMed, PubMed Central, Science Direct, J-Stage, and PubChem. Phenolic compounds isolated from the aerial parts of R. officinalis are flavonoids, phenolic acids, diterpenes, triterpenes, terpenoids, and phenylpropanoids. Some of the compounds are new to science, to the genus, and to the species. Almost 30 compounds possess anticancer properties. Rosemary extracts contain abietane diterpenes, with carnosic acid, carnosol, and rosmanol being the most common. Their molecular structures are similar to three fused aromatic rings. Carnosic acid has a –COOH group at C20, carnosol has a lactone ring occurs across the B ring, and rosmanol has a –OH group at C7. Against colon and prostate cancer cells, the rosemary extract and diterpenes inhibited cell viability and induced apoptosis and G2/M phase cell cycle arrest. The inhibition of cell migration and adhesion has also been reported. The rosemary extract and diterpenes also inhibited colon and prostate cancer xenograft in mice. Rosemary extract is more cytotoxic than the diterpenes due to its polyphenols such as flavonoids and triterpenes. In vitro and in vivo cytotoxic activities involve different molecular targets and signalling pathways. Some prospects and areas for future research are suggested.

Publisher

Maad Rayan Publishing Company

Subject

Drug Discovery

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3